2.2.7 Problems 601 to 700

Table 2.27: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

601

\begin{align*} x^{\prime }&=-3 y \\ y^{\prime }&=3 x \\ \end{align*}

system_of_ODEs

0.365

602

\begin{align*} x^{\prime }&=3 x-2 y \\ y^{\prime }&=2 x+y \\ \end{align*}

system_of_ODEs

0.789

603

\begin{align*} x^{\prime }&=2 x+4 y+3 \,{\mathrm e}^{t} \\ y^{\prime }&=5 x-y-t^{2} \\ \end{align*}

system_of_ODEs

2.713

604

\begin{align*} x^{\prime }&=t x-y \,{\mathrm e}^{t}+\cos \left (t \right ) \\ y^{\prime }&={\mathrm e}^{-t} x+t^{2} y-\sin \left (t \right ) \\ \end{align*}

system_of_ODEs

0.039

605

\begin{align*} x^{\prime }&=y+z \\ y^{\prime }&=x+z \\ z^{\prime }&=x+y \\ \end{align*}

system_of_ODEs

0.513

606

\begin{align*} x^{\prime }&=2 x-3 y \\ y^{\prime }&=x+y+2 z \\ z^{\prime }&=5 y-7 z \\ \end{align*}

system_of_ODEs

12.187

607

\begin{align*} x^{\prime }&=3 x-4 y+z+t \\ y^{\prime }&=x-3 z+t^{2} \\ z^{\prime }&=6 y-7 z+t^{3} \\ \end{align*}

system_of_ODEs

60.062

608

\begin{align*} x^{\prime }&=t x-y+{\mathrm e}^{t} z \\ y^{\prime }&=2 x+t^{2} y-z \\ z^{\prime }&={\mathrm e}^{-t} x+3 t y+t^{3} z \\ \end{align*}

system_of_ODEs

0.037

609

\begin{align*} x_{1}^{\prime }&=x_{2} \\ x_{2}^{\prime }&=2 x_{3} \\ x_{3}^{\prime }&=3 x_{4} \\ x_{4}^{\prime }&=4 x_{1} \\ \end{align*}

system_of_ODEs

1.682

610

\begin{align*} x_{1}^{\prime }&=x_{2}+x_{3}+1 \\ x_{2}^{\prime }&=x_{3}+x_{4}+t \\ x_{3}^{\prime }&=x_{1}+x_{4}+t^{2} \\ x_{4}^{\prime }&=x_{1}+x_{2}+t^{3} \\ \end{align*}

system_of_ODEs

1.996

611

\begin{align*} x_{1}^{\prime }&=4 x_{1}+2 x_{2} \\ x_{2}^{\prime }&=-3 x_{1}-x_{2} \\ \end{align*}

system_of_ODEs

0.325

612

\begin{align*} x_{1}^{\prime }&=-3 x_{1}+2 x_{2} \\ x_{2}^{\prime }&=-3 x_{1}+4 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 0 \\ x_{2} \left (0\right ) &= 5 \\ \end{align*}

system_of_ODEs

0.365

613

\begin{align*} x_{1}^{\prime }&=3 x_{1}-x_{2} \\ x_{2}^{\prime }&=5 x_{1}-3 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 5 \\ x_{2} \left (0\right ) &= -3 \\ \end{align*}

system_of_ODEs

0.349

614

\begin{align*} x_{1}^{\prime }&=4 x_{1}+x_{2} \\ x_{2}^{\prime }&=-2 x_{1}+x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 11 \\ x_{2} \left (0\right ) &= -7 \\ \end{align*}

system_of_ODEs

0.346

615

\begin{align*} x_{1}^{\prime }&=4 x_{1}-3 x_{2} \\ x_{2}^{\prime }&=6 x_{1}-7 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 8 \\ x_{2} \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.384

616

\begin{align*} x_{1}^{\prime }&=3 x_{1}-2 x_{2} \\ x_{2}^{\prime }&=-x_{1}+3 x_{2}-2 x_{3} \\ x_{3}^{\prime }&=-x_{2}+3 x_{3} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 0 \\ x_{2} \left (0\right ) &= 0 \\ x_{3} \left (0\right ) &= 4 \\ \end{align*}

system_of_ODEs

0.582

617

\begin{align*} x_{1}^{\prime }&=x_{2}+x_{3} \\ x_{2}^{\prime }&=x_{1}+x_{3} \\ x_{3}^{\prime }&=x_{1}+x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 10 \\ x_{2} \left (0\right ) &= 12 \\ x_{3} \left (0\right ) &= -1 \\ \end{align*}

system_of_ODEs

0.447

618

\begin{align*} x_{1}^{\prime }&=x_{1}+2 x_{2}+x_{3} \\ x_{2}^{\prime }&=6 x_{1}-x_{2} \\ x_{3}^{\prime }&=-x_{1}-2 x_{2}-x_{3} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= 2 \\ x_{3} \left (0\right ) &= 3 \\ \end{align*}

system_of_ODEs

0.545

619

\begin{align*} x_{1}^{\prime }&=-8 x_{1}-11 x_{2}-2 x_{3} \\ x_{2}^{\prime }&=6 x_{1}+9 x_{2}+2 x_{3} \\ x_{3}^{\prime }&=-6 x_{1}-6 x_{2}+x_{3} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 5 \\ x_{2} \left (0\right ) &= -7 \\ x_{3} \left (0\right ) &= 11 \\ \end{align*}

system_of_ODEs

0.614

620

\begin{align*} x_{1}^{\prime }&=x_{1}-4 x_{2}-2 x_{4} \\ x_{2}^{\prime }&=x_{2} \\ x_{3}^{\prime }&=6 x_{1}-12 x_{2}-x_{3}-6 x_{4} \\ x_{4}^{\prime }&=-4 x_{2}-x_{4} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= 1 \\ x_{3} \left (0\right ) &= 1 \\ x_{4} \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.653

621

\begin{align*} x_{1}^{\prime }&=x_{1}+2 x_{2} \\ x_{2}^{\prime }&=2 x_{1}+x_{2} \\ \end{align*}

system_of_ODEs

0.301

622

\begin{align*} x_{1}^{\prime }&=2 x_{1}+3 x_{2} \\ x_{2}^{\prime }&=2 x_{1}+x_{2} \\ \end{align*}

system_of_ODEs

0.329

623

\begin{align*} x_{1}^{\prime }&=3 x_{1}+4 x_{2} \\ x_{2}^{\prime }&=3 x_{1}+2 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= 1 \\ \end{align*}

system_of_ODEs

0.359

624

\begin{align*} x_{1}^{\prime }&=4 x_{1}+x_{2} \\ x_{2}^{\prime }&=6 x_{1}-x_{2} \\ \end{align*}

system_of_ODEs

0.330

625

\begin{align*} x_{1}^{\prime }&=6 x_{1}-7 x_{2} \\ x_{2}^{\prime }&=x_{1}-2 x_{2} \\ \end{align*}

system_of_ODEs

0.322

626

\begin{align*} x_{1}^{\prime }&=9 x_{1}+5 x_{2} \\ x_{2}^{\prime }&=-6 x_{1}-2 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.356

627

\begin{align*} x_{1}^{\prime }&=-3 x_{1}+4 x_{2} \\ x_{2}^{\prime }&=6 x_{1}-5 x_{2} \\ \end{align*}

system_of_ODEs

0.333

628

\begin{align*} x_{1}^{\prime }&=x_{1}-5 x_{2} \\ x_{2}^{\prime }&=x_{1}-x_{2} \\ \end{align*}

system_of_ODEs

0.348

629

\begin{align*} x_{1}^{\prime }&=2 x_{1}-5 x_{2} \\ x_{2}^{\prime }&=4 x_{1}-2 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 2 \\ x_{2} \left (0\right ) &= 3 \\ \end{align*}

system_of_ODEs

0.382

630

\begin{align*} x_{1}^{\prime }&=-3 x_{1}-2 x_{2} \\ x_{2}^{\prime }&=9 x_{1}+3 x_{2} \\ \end{align*}

system_of_ODEs

0.361

631

\begin{align*} x_{1}^{\prime }&=x_{1}-2 x_{2} \\ x_{2}^{\prime }&=2 x_{1}+x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 0 \\ x_{2} \left (0\right ) &= 4 \\ \end{align*}

system_of_ODEs

0.346

632

\begin{align*} x_{1}^{\prime }&=x_{1}-5 x_{2} \\ x_{2}^{\prime }&=x_{1}+3 x_{2} \\ \end{align*}

system_of_ODEs

0.449

633

\begin{align*} x_{1}^{\prime }&=5 x_{1}-9 x_{2} \\ x_{2}^{\prime }&=2 x_{1}-x_{2} \\ \end{align*}

system_of_ODEs

0.474

634

\begin{align*} x_{1}^{\prime }&=3 x_{1}-4 x_{2} \\ x_{2}^{\prime }&=4 x_{1}+3 x_{2} \\ \end{align*}

system_of_ODEs

0.337

635

\begin{align*} x_{1}^{\prime }&=7 x_{1}-5 x_{2} \\ x_{2}^{\prime }&=4 x_{1}+3 x_{2} \\ \end{align*}

system_of_ODEs

0.467

636

\begin{align*} x_{1}^{\prime }&=-50 x_{1}+20 x_{2} \\ x_{2}^{\prime }&=100 x_{1}-60 x_{2} \\ \end{align*}

system_of_ODEs

0.348

637

\begin{align*} x_{1}^{\prime }&=4 x_{1}+x_{2}+4 x_{3} \\ x_{2}^{\prime }&=x_{1}+7 x_{2}+x_{3} \\ x_{3}^{\prime }&=4 x_{1}+x_{2}+4 x_{3} \\ \end{align*}

system_of_ODEs

0.540

638

\begin{align*} x_{1}^{\prime }&=x_{1}+2 x_{2}+2 x_{3} \\ x_{2}^{\prime }&=2 x_{1}+7 x_{2}+x_{3} \\ x_{3}^{\prime }&=2 x_{1}+x_{2}+7 x_{3} \\ \end{align*}

system_of_ODEs

0.542

639

\begin{align*} x_{1}^{\prime }&=4 x_{1}+x_{2}+x_{3} \\ x_{2}^{\prime }&=x_{1}+4 x_{2}+x_{3} \\ x_{3}^{\prime }&=x_{1}+x_{2}+4 x_{3} \\ \end{align*}

system_of_ODEs

0.445

640

\begin{align*} x_{1}^{\prime }&=5 x_{1}+x_{2}+3 x_{3} \\ x_{2}^{\prime }&=x_{1}+7 x_{2}+x_{3} \\ x_{3}^{\prime }&=3 x_{1}+x_{2}+5 x_{3} \\ \end{align*}

system_of_ODEs

0.566

641

\begin{align*} x_{1}^{\prime }&=5 x_{1}-6 x_{3} \\ x_{2}^{\prime }&=2 x_{1}-x_{2}-2 x_{3} \\ x_{3}^{\prime }&=4 x_{1}-2 x_{2}-4 x_{3} \\ \end{align*}

system_of_ODEs

0.633

642

\begin{align*} x_{1}^{\prime }&=3 x_{1}+2 x_{2}+2 x_{3} \\ x_{2}^{\prime }&=-5 x_{1}-4 x_{2}-2 x_{3} \\ x_{3}^{\prime }&=5 x_{1}+5 x_{2}+3 x_{3} \\ \end{align*}

system_of_ODEs

0.552

643

\begin{align*} x_{1}^{\prime }&=3 x_{1}+x_{2}+x_{3} \\ x_{2}^{\prime }&=-5 x_{1}-3 x_{2}-x_{3} \\ x_{3}^{\prime }&=5 x_{1}+5 x_{2}+3 x_{3} \\ \end{align*}

system_of_ODEs

0.539

644

\begin{align*} x_{1}^{\prime }&=2 x_{1}+x_{2}-x_{3} \\ x_{2}^{\prime }&=-4 x_{1}-3 x_{2}-x_{3} \\ x_{3}^{\prime }&=4 x_{1}+4 x_{2}+2 x_{3} \\ \end{align*}

system_of_ODEs

0.714

645

\begin{align*} x_{1}^{\prime }&=5 x_{1}+5 x_{2}+2 x_{3} \\ x_{2}^{\prime }&=-6 x_{1}-6 x_{2}-5 x_{3} \\ x_{3}^{\prime }&=6 x_{1}+6 x_{2}+5 x_{3} \\ \end{align*}

system_of_ODEs

0.875

646

\begin{align*} x_{1}^{\prime }&=3 x_{1}+x_{3} \\ x_{2}^{\prime }&=9 x_{1}-x_{2}+2 x_{3} \\ x_{3}^{\prime }&=-9 x_{1}+4 x_{2}-x_{3} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 0 \\ x_{2} \left (0\right ) &= 0 \\ x_{3} \left (0\right ) &= 17 \\ \end{align*}

system_of_ODEs

0.974

647

\begin{align*} x_{1}^{\prime }&=x_{1} \\ x_{2}^{\prime }&=2 x_{1}+2 x_{2} \\ x_{3}^{\prime }&=3 x_{2}+3 x_{3} \\ x_{4}^{\prime }&=4 x_{3}+4 x_{4} \\ \end{align*}

system_of_ODEs

1.023

648

\begin{align*} x_{1}^{\prime }&=-2 x_{1}+9 x_{4} \\ x_{2}^{\prime }&=4 x_{1}+2 x_{2}-10 x_{4} \\ x_{3}^{\prime }&=-x_{3}+8 x_{4} \\ x_{4}^{\prime }&=x_{4} \\ \end{align*}

system_of_ODEs

1.008

649

\begin{align*} x_{1}^{\prime }&=2 x_{1} \\ x_{2}^{\prime }&=-21 x_{1}-5 x_{2}-27 x_{3}-9 x_{4} \\ x_{3}^{\prime }&=5 x_{3} \\ x_{4}^{\prime }&=-21 x_{3}-2 x_{4} \\ \end{align*}

system_of_ODEs

1.148

650

\begin{align*} x_{1}^{\prime }&=4 x_{1}+x_{2}+x_{3}+7 x_{4} \\ x_{2}^{\prime }&=x_{1}+4 x_{2}+10 x_{3}+x_{4} \\ x_{3}^{\prime }&=x_{1}+10 x_{2}+4 x_{3}+x_{4} \\ x_{4}^{\prime }&=7 x_{1}+x_{2}+x_{3}+4 x_{4} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 3 \\ x_{2} \left (0\right ) &= 1 \\ x_{3} \left (0\right ) &= 1 \\ x_{4} \left (0\right ) &= 3 \\ \end{align*}

system_of_ODEs

1.100

651

\begin{align*} y^{\prime }&=2 x +1 \\ y \left (0\right ) &= 3 \\ \end{align*}

[_quadrature]

0.415

652

\begin{align*} y^{\prime }&=\left (x -2\right )^{2} \\ y \left (2\right ) &= 1 \\ \end{align*}

[_quadrature]

0.421

653

\begin{align*} y^{\prime }&=\sqrt {x} \\ y \left (4\right ) &= 0 \\ \end{align*}

[_quadrature]

0.537

654

\begin{align*} y^{\prime }&=\frac {1}{x^{2}} \\ y \left (1\right ) &= 5 \\ \end{align*}

[_quadrature]

0.382

655

\begin{align*} y^{\prime }&=\frac {1}{\sqrt {2+x}} \\ y \left (2\right ) &= -1 \\ \end{align*}

[_quadrature]

0.230

656

\begin{align*} y^{\prime }&=x \sqrt {x^{2}+9} \\ y \left (-4\right ) &= 0 \\ \end{align*}

[_quadrature]

2.647

657

\begin{align*} y^{\prime }&=\frac {10}{x^{2}+1} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_quadrature]

0.207

658

\begin{align*} y^{\prime }&=\cos \left (2 x \right ) \\ y \left (0\right ) &= 1 \\ \end{align*}

[_quadrature]

0.266

659

\begin{align*} y^{\prime }&=\frac {1}{\sqrt {-x^{2}+1}} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_quadrature]

0.253

660

\begin{align*} y^{\prime }&=x \,{\mathrm e}^{-x} \\ y \left (0\right ) &= 1 \\ \end{align*}

[_quadrature]

1.257

661

\begin{align*} y^{\prime }&=-y-\sin \left (x \right ) \\ \end{align*}

[[_linear, ‘class A‘]]

1.334

662

\begin{align*} y^{\prime }&=x +y \\ \end{align*}

[[_linear, ‘class A‘]]

0.602

663

\begin{align*} y^{\prime }&=y-\sin \left (x \right ) \\ \end{align*}

[[_linear, ‘class A‘]]

1.345

664

\begin{align*} y^{\prime }&=x -y \\ \end{align*}

[[_linear, ‘class A‘]]

0.573

665

\begin{align*} y^{\prime }&=y-x +1 \\ \end{align*}

[[_linear, ‘class A‘]]

0.668

666

\begin{align*} y^{\prime }&=x -y+1 \\ \end{align*}

[[_linear, ‘class A‘]]

0.664

667

\begin{align*} y^{\prime }&=x^{2}-y \\ \end{align*}

[[_linear, ‘class A‘]]

1.152

668

\begin{align*} y^{\prime }&=x^{2}-y-2 \\ \end{align*}

[[_linear, ‘class A‘]]

1.211

669

\begin{align*} y^{\prime }&=2 y^{2} x^{2} \\ y \left (1\right ) &= -1 \\ \end{align*}

[_separable]

2.378

670

\begin{align*} y^{\prime }&=\ln \left (y\right ) x \\ \end{align*}

[_separable]

1.085

671

\begin{align*} y^{\prime }&=y^{{1}/{3}} \\ y \left (0\right ) &= 1 \\ \end{align*}

[_quadrature]

1.717

672

\begin{align*} y^{\prime }&=y^{{1}/{3}} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_quadrature]

1.533

673

\begin{align*} y^{\prime } y&=x -1 \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

2.109

674

\begin{align*} y^{\prime } y&=x -1 \\ y \left (1\right ) &= 0 \\ \end{align*}

[_separable]

2.910

675

\begin{align*} y^{\prime }&=\ln \left (1+y^{2}\right ) \\ y \left (0\right ) &= 0 \\ \end{align*}

[_quadrature]

1.149

676

\begin{align*} y^{\prime }&=x^{2}-y^{2} \\ \end{align*}

[_Riccati]

4.909

677

\begin{align*} y^{\prime }+2 y x&=0 \\ \end{align*}

[_separable]

1.570

678

\begin{align*} y^{\prime }+2 x y^{2}&=0 \\ \end{align*}

[_separable]

2.319

679

\begin{align*} y^{\prime }&=y \sin \left (x \right ) \\ \end{align*}

[_separable]

1.861

680

\begin{align*} \left (x +1\right ) y^{\prime }&=4 y \\ \end{align*}

[_separable]

1.790

681

\begin{align*} 2 \sqrt {x}\, y^{\prime }&=\sqrt {1-y^{2}} \\ \end{align*}

[_separable]

1.825

682

\begin{align*} y^{\prime }&=3 \sqrt {y x} \\ \end{align*}

[[_homogeneous, ‘class G‘]]

7.533

683

\begin{align*} y^{\prime }&=4 \left (y x \right )^{{1}/{3}} \\ \end{align*}

[[_homogeneous, ‘class G‘]]

53.993

684

\begin{align*} y^{\prime }&=2 x \sec \left (y\right ) \\ \end{align*}

[_separable]

1.602

685

\begin{align*} \left (-x^{2}+1\right ) y^{\prime }&=2 y \\ \end{align*}

[_separable]

1.932

686

\begin{align*} \left (x^{2}+1\right ) y^{\prime }&=\left (1+y\right )^{2} \\ \end{align*}

[_separable]

3.063

687

\begin{align*} y^{\prime }&=x y^{3} \\ \end{align*}

[_separable]

2.922

688

\begin{align*} y^{\prime } y&=x \left (1+y^{2}\right ) \\ \end{align*}

[_separable]

2.205

689

\begin{align*} y^{\prime }&=\frac {1+\sqrt {x}}{1+\sqrt {y}} \\ \end{align*}

[_separable]

2.318

690

\begin{align*} y^{\prime }&=\frac {\left (x -1\right ) y^{5}}{x^{2} \left (2 y^{3}-y\right )} \\ \end{align*}

[_separable]

2.332

691

\begin{align*} \left (x^{2}+1\right ) \tan \left (y\right ) y^{\prime }&=x \\ \end{align*}

[_separable]

2.095

692

\begin{align*} y^{\prime }&=1+x +y+y x \\ \end{align*}

[_separable]

1.954

693

\begin{align*} x^{2} y^{\prime }&=1-x^{2}+y^{2}-y^{2} x^{2} \\ \end{align*}

[_separable]

3.131

694

\begin{align*} y^{\prime }&={\mathrm e}^{x} y \\ y \left (0\right ) &= 2 \,{\mathrm e} \\ \end{align*}

[_separable]

2.261

695

\begin{align*} y^{\prime }&=3 x^{2} \left (1+y^{2}\right ) \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

3.048

696

\begin{align*} 2 y^{\prime } y&=\frac {x}{\sqrt {x^{2}-16}} \\ y \left (5\right ) &= 2 \\ \end{align*}

[_separable]

2.940

697

\begin{align*} y^{\prime }&=4 x^{3} y-y \\ y \left (1\right ) &= -3 \\ \end{align*}

[_separable]

2.722

698

\begin{align*} 1+y^{\prime }&=2 y \\ y \left (1\right ) &= 1 \\ \end{align*}

[_quadrature]

0.512

699

\begin{align*} \tan \left (x \right ) y^{\prime }&=y \\ y \left (\frac {\pi }{2}\right ) &= \frac {\pi }{2} \\ \end{align*}

[_separable]

2.343

700

\begin{align*} -y+y^{\prime } x&=2 x^{2} y \\ y \left (1\right ) &= 1 \\ \end{align*}

[_separable]

2.474