| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
x^{\prime }&=-3 y \\
y^{\prime }&=3 x \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.365 |
|
| \begin{align*}
x^{\prime }&=3 x-2 y \\
y^{\prime }&=2 x+y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.789 |
|
| \begin{align*}
x^{\prime }&=2 x+4 y+3 \,{\mathrm e}^{t} \\
y^{\prime }&=5 x-y-t^{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
2.713 |
|
| \begin{align*}
x^{\prime }&=t x-y \,{\mathrm e}^{t}+\cos \left (t \right ) \\
y^{\prime }&={\mathrm e}^{-t} x+t^{2} y-\sin \left (t \right ) \\
\end{align*} |
system_of_ODEs |
✗ |
✓ |
✗ |
✗ |
0.039 |
|
| \begin{align*}
x^{\prime }&=y+z \\
y^{\prime }&=x+z \\
z^{\prime }&=x+y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.513 |
|
| \begin{align*}
x^{\prime }&=2 x-3 y \\
y^{\prime }&=x+y+2 z \\
z^{\prime }&=5 y-7 z \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✗ |
12.187 |
|
| \begin{align*}
x^{\prime }&=3 x-4 y+z+t \\
y^{\prime }&=x-3 z+t^{2} \\
z^{\prime }&=6 y-7 z+t^{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✗ |
60.062 |
|
| \begin{align*}
x^{\prime }&=t x-y+{\mathrm e}^{t} z \\
y^{\prime }&=2 x+t^{2} y-z \\
z^{\prime }&={\mathrm e}^{-t} x+3 t y+t^{3} z \\
\end{align*} |
system_of_ODEs |
✗ |
✗ |
✗ |
✗ |
0.037 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{2} \\
x_{2}^{\prime }&=2 x_{3} \\
x_{3}^{\prime }&=3 x_{4} \\
x_{4}^{\prime }&=4 x_{1} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
1.682 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{2}+x_{3}+1 \\
x_{2}^{\prime }&=x_{3}+x_{4}+t \\
x_{3}^{\prime }&=x_{1}+x_{4}+t^{2} \\
x_{4}^{\prime }&=x_{1}+x_{2}+t^{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
1.996 |
|
| \begin{align*}
x_{1}^{\prime }&=4 x_{1}+2 x_{2} \\
x_{2}^{\prime }&=-3 x_{1}-x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.325 |
|
| \begin{align*}
x_{1}^{\prime }&=-3 x_{1}+2 x_{2} \\
x_{2}^{\prime }&=-3 x_{1}+4 x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 0 \\
x_{2} \left (0\right ) &= 5 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.365 |
|
| \begin{align*}
x_{1}^{\prime }&=3 x_{1}-x_{2} \\
x_{2}^{\prime }&=5 x_{1}-3 x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 5 \\
x_{2} \left (0\right ) &= -3 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.349 |
|
| \begin{align*}
x_{1}^{\prime }&=4 x_{1}+x_{2} \\
x_{2}^{\prime }&=-2 x_{1}+x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 11 \\
x_{2} \left (0\right ) &= -7 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.346 |
|
| \begin{align*}
x_{1}^{\prime }&=4 x_{1}-3 x_{2} \\
x_{2}^{\prime }&=6 x_{1}-7 x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 8 \\
x_{2} \left (0\right ) &= 0 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.384 |
|
| \begin{align*}
x_{1}^{\prime }&=3 x_{1}-2 x_{2} \\
x_{2}^{\prime }&=-x_{1}+3 x_{2}-2 x_{3} \\
x_{3}^{\prime }&=-x_{2}+3 x_{3} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 0 \\
x_{2} \left (0\right ) &= 0 \\
x_{3} \left (0\right ) &= 4 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.582 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{2}+x_{3} \\
x_{2}^{\prime }&=x_{1}+x_{3} \\
x_{3}^{\prime }&=x_{1}+x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 10 \\
x_{2} \left (0\right ) &= 12 \\
x_{3} \left (0\right ) &= -1 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.447 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{1}+2 x_{2}+x_{3} \\
x_{2}^{\prime }&=6 x_{1}-x_{2} \\
x_{3}^{\prime }&=-x_{1}-2 x_{2}-x_{3} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 1 \\
x_{2} \left (0\right ) &= 2 \\
x_{3} \left (0\right ) &= 3 \\
\end{align*} | system_of_ODEs | ✓ | ✓ | ✓ | ✓ | 0.545 |
|
| \begin{align*}
x_{1}^{\prime }&=-8 x_{1}-11 x_{2}-2 x_{3} \\
x_{2}^{\prime }&=6 x_{1}+9 x_{2}+2 x_{3} \\
x_{3}^{\prime }&=-6 x_{1}-6 x_{2}+x_{3} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 5 \\
x_{2} \left (0\right ) &= -7 \\
x_{3} \left (0\right ) &= 11 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.614 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{1}-4 x_{2}-2 x_{4} \\
x_{2}^{\prime }&=x_{2} \\
x_{3}^{\prime }&=6 x_{1}-12 x_{2}-x_{3}-6 x_{4} \\
x_{4}^{\prime }&=-4 x_{2}-x_{4} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 1 \\
x_{2} \left (0\right ) &= 1 \\
x_{3} \left (0\right ) &= 1 \\
x_{4} \left (0\right ) &= 1 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.653 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{1}+2 x_{2} \\
x_{2}^{\prime }&=2 x_{1}+x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.301 |
|
| \begin{align*}
x_{1}^{\prime }&=2 x_{1}+3 x_{2} \\
x_{2}^{\prime }&=2 x_{1}+x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.329 |
|
| \begin{align*}
x_{1}^{\prime }&=3 x_{1}+4 x_{2} \\
x_{2}^{\prime }&=3 x_{1}+2 x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 1 \\
x_{2} \left (0\right ) &= 1 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.359 |
|
| \begin{align*}
x_{1}^{\prime }&=4 x_{1}+x_{2} \\
x_{2}^{\prime }&=6 x_{1}-x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.330 |
|
| \begin{align*}
x_{1}^{\prime }&=6 x_{1}-7 x_{2} \\
x_{2}^{\prime }&=x_{1}-2 x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.322 |
|
| \begin{align*}
x_{1}^{\prime }&=9 x_{1}+5 x_{2} \\
x_{2}^{\prime }&=-6 x_{1}-2 x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 1 \\
x_{2} \left (0\right ) &= 0 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.356 |
|
| \begin{align*}
x_{1}^{\prime }&=-3 x_{1}+4 x_{2} \\
x_{2}^{\prime }&=6 x_{1}-5 x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.333 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{1}-5 x_{2} \\
x_{2}^{\prime }&=x_{1}-x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.348 |
|
| \begin{align*}
x_{1}^{\prime }&=2 x_{1}-5 x_{2} \\
x_{2}^{\prime }&=4 x_{1}-2 x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 2 \\
x_{2} \left (0\right ) &= 3 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.382 |
|
| \begin{align*}
x_{1}^{\prime }&=-3 x_{1}-2 x_{2} \\
x_{2}^{\prime }&=9 x_{1}+3 x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.361 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{1}-2 x_{2} \\
x_{2}^{\prime }&=2 x_{1}+x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 0 \\
x_{2} \left (0\right ) &= 4 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.346 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{1}-5 x_{2} \\
x_{2}^{\prime }&=x_{1}+3 x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.449 |
|
| \begin{align*}
x_{1}^{\prime }&=5 x_{1}-9 x_{2} \\
x_{2}^{\prime }&=2 x_{1}-x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.474 |
|
| \begin{align*}
x_{1}^{\prime }&=3 x_{1}-4 x_{2} \\
x_{2}^{\prime }&=4 x_{1}+3 x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.337 |
|
| \begin{align*}
x_{1}^{\prime }&=7 x_{1}-5 x_{2} \\
x_{2}^{\prime }&=4 x_{1}+3 x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.467 |
|
| \begin{align*}
x_{1}^{\prime }&=-50 x_{1}+20 x_{2} \\
x_{2}^{\prime }&=100 x_{1}-60 x_{2} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.348 |
|
| \begin{align*}
x_{1}^{\prime }&=4 x_{1}+x_{2}+4 x_{3} \\
x_{2}^{\prime }&=x_{1}+7 x_{2}+x_{3} \\
x_{3}^{\prime }&=4 x_{1}+x_{2}+4 x_{3} \\
\end{align*} | system_of_ODEs | ✓ | ✓ | ✓ | ✓ | 0.540 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{1}+2 x_{2}+2 x_{3} \\
x_{2}^{\prime }&=2 x_{1}+7 x_{2}+x_{3} \\
x_{3}^{\prime }&=2 x_{1}+x_{2}+7 x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.542 |
|
| \begin{align*}
x_{1}^{\prime }&=4 x_{1}+x_{2}+x_{3} \\
x_{2}^{\prime }&=x_{1}+4 x_{2}+x_{3} \\
x_{3}^{\prime }&=x_{1}+x_{2}+4 x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.445 |
|
| \begin{align*}
x_{1}^{\prime }&=5 x_{1}+x_{2}+3 x_{3} \\
x_{2}^{\prime }&=x_{1}+7 x_{2}+x_{3} \\
x_{3}^{\prime }&=3 x_{1}+x_{2}+5 x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.566 |
|
| \begin{align*}
x_{1}^{\prime }&=5 x_{1}-6 x_{3} \\
x_{2}^{\prime }&=2 x_{1}-x_{2}-2 x_{3} \\
x_{3}^{\prime }&=4 x_{1}-2 x_{2}-4 x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.633 |
|
| \begin{align*}
x_{1}^{\prime }&=3 x_{1}+2 x_{2}+2 x_{3} \\
x_{2}^{\prime }&=-5 x_{1}-4 x_{2}-2 x_{3} \\
x_{3}^{\prime }&=5 x_{1}+5 x_{2}+3 x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.552 |
|
| \begin{align*}
x_{1}^{\prime }&=3 x_{1}+x_{2}+x_{3} \\
x_{2}^{\prime }&=-5 x_{1}-3 x_{2}-x_{3} \\
x_{3}^{\prime }&=5 x_{1}+5 x_{2}+3 x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.539 |
|
| \begin{align*}
x_{1}^{\prime }&=2 x_{1}+x_{2}-x_{3} \\
x_{2}^{\prime }&=-4 x_{1}-3 x_{2}-x_{3} \\
x_{3}^{\prime }&=4 x_{1}+4 x_{2}+2 x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.714 |
|
| \begin{align*}
x_{1}^{\prime }&=5 x_{1}+5 x_{2}+2 x_{3} \\
x_{2}^{\prime }&=-6 x_{1}-6 x_{2}-5 x_{3} \\
x_{3}^{\prime }&=6 x_{1}+6 x_{2}+5 x_{3} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.875 |
|
| \begin{align*}
x_{1}^{\prime }&=3 x_{1}+x_{3} \\
x_{2}^{\prime }&=9 x_{1}-x_{2}+2 x_{3} \\
x_{3}^{\prime }&=-9 x_{1}+4 x_{2}-x_{3} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 0 \\
x_{2} \left (0\right ) &= 0 \\
x_{3} \left (0\right ) &= 17 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.974 |
|
| \begin{align*}
x_{1}^{\prime }&=x_{1} \\
x_{2}^{\prime }&=2 x_{1}+2 x_{2} \\
x_{3}^{\prime }&=3 x_{2}+3 x_{3} \\
x_{4}^{\prime }&=4 x_{3}+4 x_{4} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
1.023 |
|
| \begin{align*}
x_{1}^{\prime }&=-2 x_{1}+9 x_{4} \\
x_{2}^{\prime }&=4 x_{1}+2 x_{2}-10 x_{4} \\
x_{3}^{\prime }&=-x_{3}+8 x_{4} \\
x_{4}^{\prime }&=x_{4} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
1.008 |
|
| \begin{align*}
x_{1}^{\prime }&=2 x_{1} \\
x_{2}^{\prime }&=-21 x_{1}-5 x_{2}-27 x_{3}-9 x_{4} \\
x_{3}^{\prime }&=5 x_{3} \\
x_{4}^{\prime }&=-21 x_{3}-2 x_{4} \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
1.148 |
|
| \begin{align*}
x_{1}^{\prime }&=4 x_{1}+x_{2}+x_{3}+7 x_{4} \\
x_{2}^{\prime }&=x_{1}+4 x_{2}+10 x_{3}+x_{4} \\
x_{3}^{\prime }&=x_{1}+10 x_{2}+4 x_{3}+x_{4} \\
x_{4}^{\prime }&=7 x_{1}+x_{2}+x_{3}+4 x_{4} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 3 \\
x_{2} \left (0\right ) &= 1 \\
x_{3} \left (0\right ) &= 1 \\
x_{4} \left (0\right ) &= 3 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
1.100 |
|
| \begin{align*}
y^{\prime }&=2 x +1 \\
y \left (0\right ) &= 3 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.415 |
|
| \begin{align*}
y^{\prime }&=\left (x -2\right )^{2} \\
y \left (2\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.421 |
|
| \begin{align*}
y^{\prime }&=\sqrt {x} \\
y \left (4\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.537 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{x^{2}} \\
y \left (1\right ) &= 5 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.382 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{\sqrt {2+x}} \\
y \left (2\right ) &= -1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.230 |
|
| \begin{align*}
y^{\prime }&=x \sqrt {x^{2}+9} \\
y \left (-4\right ) &= 0 \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 2.647 |
|
| \begin{align*}
y^{\prime }&=\frac {10}{x^{2}+1} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.207 |
|
| \begin{align*}
y^{\prime }&=\cos \left (2 x \right ) \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.266 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{\sqrt {-x^{2}+1}} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.253 |
|
| \begin{align*}
y^{\prime }&=x \,{\mathrm e}^{-x} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.257 |
|
| \begin{align*}
y^{\prime }&=-y-\sin \left (x \right ) \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.334 |
|
| \begin{align*}
y^{\prime }&=x +y \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
0.602 |
|
| \begin{align*}
y^{\prime }&=y-\sin \left (x \right ) \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.345 |
|
| \begin{align*}
y^{\prime }&=x -y \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
0.573 |
|
| \begin{align*}
y^{\prime }&=y-x +1 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
0.668 |
|
| \begin{align*}
y^{\prime }&=x -y+1 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
0.664 |
|
| \begin{align*}
y^{\prime }&=x^{2}-y \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.152 |
|
| \begin{align*}
y^{\prime }&=x^{2}-y-2 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.211 |
|
| \begin{align*}
y^{\prime }&=2 y^{2} x^{2} \\
y \left (1\right ) &= -1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.378 |
|
| \begin{align*}
y^{\prime }&=\ln \left (y\right ) x \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.085 |
|
| \begin{align*}
y^{\prime }&=y^{{1}/{3}} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
1.717 |
|
| \begin{align*}
y^{\prime }&=y^{{1}/{3}} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.533 |
|
| \begin{align*}
y^{\prime } y&=x -1 \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.109 |
|
| \begin{align*}
y^{\prime } y&=x -1 \\
y \left (1\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.910 |
|
| \begin{align*}
y^{\prime }&=\ln \left (1+y^{2}\right ) \\
y \left (0\right ) &= 0 \\
\end{align*} | [_quadrature] | ✓ | ✓ | ✓ | ✓ | 1.149 |
|
| \begin{align*}
y^{\prime }&=x^{2}-y^{2} \\
\end{align*} |
[_Riccati] |
✓ |
✓ |
✓ |
✗ |
4.909 |
|
| \begin{align*}
y^{\prime }+2 y x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.570 |
|
| \begin{align*}
y^{\prime }+2 x y^{2}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.319 |
|
| \begin{align*}
y^{\prime }&=y \sin \left (x \right ) \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.861 |
|
| \begin{align*}
\left (x +1\right ) y^{\prime }&=4 y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.790 |
|
| \begin{align*}
2 \sqrt {x}\, y^{\prime }&=\sqrt {1-y^{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.825 |
|
| \begin{align*}
y^{\prime }&=3 \sqrt {y x} \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✓ |
7.533 |
|
| \begin{align*}
y^{\prime }&=4 \left (y x \right )^{{1}/{3}} \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✗ |
53.993 |
|
| \begin{align*}
y^{\prime }&=2 x \sec \left (y\right ) \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.602 |
|
| \begin{align*}
\left (-x^{2}+1\right ) y^{\prime }&=2 y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.932 |
|
| \begin{align*}
\left (x^{2}+1\right ) y^{\prime }&=\left (1+y\right )^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.063 |
|
| \begin{align*}
y^{\prime }&=x y^{3} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.922 |
|
| \begin{align*}
y^{\prime } y&=x \left (1+y^{2}\right ) \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.205 |
|
| \begin{align*}
y^{\prime }&=\frac {1+\sqrt {x}}{1+\sqrt {y}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
2.318 |
|
| \begin{align*}
y^{\prime }&=\frac {\left (x -1\right ) y^{5}}{x^{2} \left (2 y^{3}-y\right )} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
2.332 |
|
| \begin{align*}
\left (x^{2}+1\right ) \tan \left (y\right ) y^{\prime }&=x \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.095 |
|
| \begin{align*}
y^{\prime }&=1+x +y+y x \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.954 |
|
| \begin{align*}
x^{2} y^{\prime }&=1-x^{2}+y^{2}-y^{2} x^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.131 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{x} y \\
y \left (0\right ) &= 2 \,{\mathrm e} \\
\end{align*} | [_separable] | ✓ | ✓ | ✓ | ✓ | 2.261 |
|
| \begin{align*}
y^{\prime }&=3 x^{2} \left (1+y^{2}\right ) \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.048 |
|
| \begin{align*}
2 y^{\prime } y&=\frac {x}{\sqrt {x^{2}-16}} \\
y \left (5\right ) &= 2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.940 |
|
| \begin{align*}
y^{\prime }&=4 x^{3} y-y \\
y \left (1\right ) &= -3 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.722 |
|
| \begin{align*}
1+y^{\prime }&=2 y \\
y \left (1\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.512 |
|
| \begin{align*}
\tan \left (x \right ) y^{\prime }&=y \\
y \left (\frac {\pi }{2}\right ) &= \frac {\pi }{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.343 |
|
| \begin{align*}
-y+y^{\prime } x&=2 x^{2} y \\
y \left (1\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.474 |
|