2.2.6 Problems 501 to 600

Table 2.25: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

501

\begin{align*} 5 y^{\prime \prime } x +\left (30+3 x \right ) y^{\prime }+3 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.673

502

\begin{align*} y^{\prime \prime } x -\left (x +4\right ) y^{\prime }+3 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Laguerre]

0.655

503

\begin{align*} 2 y^{\prime \prime } x -\left (6+2 x \right ) y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[_Laguerre]

1.706

504

\begin{align*} x^{2} y^{\prime \prime }+\left (3 x^{2}+2 x \right ) y^{\prime }-2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.586

505

\begin{align*} \left (1-x \right ) x y^{\prime \prime }-3 y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.618

506

\begin{align*} y^{\prime \prime } x +y^{\prime }-y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.391

507

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +\left (x^{2}+1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.434

508

\begin{align*} x^{2} y^{\prime \prime }+\left (x^{2}-3 x \right ) y^{\prime }+4 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.513

509

\begin{align*} x^{2} y^{\prime \prime }+x^{2} y^{\prime }-2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.609

510

\begin{align*} x^{2} y^{\prime \prime }+\left (2 x^{2}-3 x \right ) y^{\prime }+3 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

1.539

511

\begin{align*} x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-4 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.625

512

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {9}{4}\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.521

513

\begin{align*} x^{2} y^{\prime \prime }-x \left (x +1\right ) y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.471

514

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +\left (x^{2}+1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.328

515

\begin{align*} y^{\prime \prime } x +3 y^{\prime }+y x&=0 \\ \end{align*}

[_Lienard]

0.300

516

\begin{align*} y^{\prime \prime } x -y^{\prime }+36 x^{3} y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.884

517

\begin{align*} x^{2} y^{\prime \prime }-5 y^{\prime } x +\left (8+x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.203

518

\begin{align*} 36 x^{2} y^{\prime \prime }+60 y^{\prime } x +\left (9 x^{3}-5\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.195

519

\begin{align*} 16 x^{2} y^{\prime \prime }+24 y^{\prime } x +\left (144 x^{3}+1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.213

520

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +\left (x^{2}+1\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.309

521

\begin{align*} 4 x^{2} y^{\prime \prime }-12 y^{\prime } x +\left (15+16 x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.195

522

\begin{align*} 16 x^{2} y^{\prime \prime }-\left (-144 x^{3}+5\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.292

523

\begin{align*} 2 x^{2} y^{\prime \prime }-3 y^{\prime } x -2 \left (-x^{5}+14\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.221

524

\begin{align*} y^{\prime \prime }+x^{4} y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.524

525

\begin{align*} y^{\prime \prime } x +4 x^{3} y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

0.533

526

\begin{align*} y^{\prime \prime } x +2 y^{\prime }+y x&=0 \\ \end{align*}

[_Lienard]

0.296

527

\begin{align*} y^{\prime }&=y^{2}+x^{2} \\ \end{align*}

[[_Riccati, _special]]

39.950

528

\begin{align*} y^{\prime }&=y^{2}+x^{2} \\ y \left (0\right ) &= 0 \\ \end{align*}

[[_Riccati, _special]]

8.754

529

\begin{align*} y^{\prime }&=y^{2}+x^{2} \\ y \left (0\right ) &= 1 \\ \end{align*}

[[_Riccati, _special]]

8.248

530

\begin{align*} x^{\prime \prime }+4 x&=0 \\ x \left (0\right ) &= 5 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.207

531

\begin{align*} x^{\prime \prime }+9 x&=0 \\ x \left (0\right ) &= 3 \\ x^{\prime }\left (0\right ) &= 4 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.156

532

\begin{align*} x^{\prime \prime }-x^{\prime }-2 x&=0 \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.151

533

\begin{align*} x^{\prime \prime }+8 x^{\prime }+15 x&=0 \\ x \left (0\right ) &= 2 \\ x^{\prime }\left (0\right ) &= -3 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.144

534

\begin{align*} x^{\prime \prime }+x&=\sin \left (2 t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.194

535

\begin{align*} x^{\prime \prime }+4 x&=\cos \left (t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.174

536

\begin{align*} x^{\prime \prime }+x&=\cos \left (3 t \right ) \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.186

537

\begin{align*} x^{\prime \prime }+9 x&=1 \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.147

538

\begin{align*} x^{\prime \prime }+4 x^{\prime }+3 x&=1 \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.144

539

\begin{align*} x^{\prime \prime }+3 x^{\prime }+2 x&=t \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.178

540

\begin{align*} x^{\prime }&=2 x+y \\ y^{\prime }&=6 x+3 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= -2 \\ \end{align*}

system_of_ODEs

0.392

541

\begin{align*} x^{\prime \prime }+6 x^{\prime }+25 x&=0 \\ x \left (0\right ) &= 2 \\ x^{\prime }\left (0\right ) &= 3 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.161

542

\begin{align*} x^{\prime \prime }-6 x^{\prime }+8 x&=2 \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _missing_x]]

0.150

543

\begin{align*} x^{\prime \prime }-4 x&=3 t \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.147

544

\begin{align*} x^{\prime \prime }+4 x^{\prime }+8 x&={\mathrm e}^{-t} \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.202

545

\begin{align*} x^{\prime \prime \prime }+x^{\prime \prime }-6 x^{\prime }&=0 \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 1 \\ x^{\prime \prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_3rd_order, _missing_x]]

0.188

546

\begin{align*} x^{\prime \prime \prime \prime }-x&=0 \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= 0 \\ x^{\prime \prime }\left (0\right ) &= 0 \\ x^{\prime \prime \prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_high_order, _missing_x]]

0.223

547

\begin{align*} x^{\prime \prime \prime \prime }+x&=0 \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ x^{\prime \prime }\left (0\right ) &= 0 \\ x^{\prime \prime \prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_high_order, _missing_x]]

0.326

548

\begin{align*} x^{\prime \prime \prime \prime }+13 x^{\prime \prime }+36 x&=0 \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 2 \\ x^{\prime \prime }\left (0\right ) &= 0 \\ x^{\prime \prime \prime }\left (0\right ) &= -13 \\ \end{align*}
Using Laplace transform method.

[[_high_order, _missing_x]]

0.247

549

\begin{align*} x^{\prime \prime \prime \prime }+8 x^{\prime \prime }+16 x&=0 \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ x^{\prime \prime }\left (0\right ) &= 0 \\ x^{\prime \prime \prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_high_order, _missing_x]]

0.234

550

\begin{align*} x^{\prime \prime \prime \prime }+2 x^{\prime \prime }+x&={\mathrm e}^{2 t} \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ x^{\prime \prime }\left (0\right ) &= 0 \\ x^{\prime \prime \prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_high_order, _with_linear_symmetries]]

0.283

551

\begin{align*} x^{\prime \prime }+4 x^{\prime }+13 x&=t \,{\mathrm e}^{-t} \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.228

552

\begin{align*} x^{\prime \prime }+6 x^{\prime }+18 x&=\cos \left (2 t \right ) \\ x \left (0\right ) &= 1 \\ x^{\prime }\left (0\right ) &= -1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.221

553

\begin{align*} x^{\prime \prime }+9 x&=6 \cos \left (3 t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.151

554

\begin{align*} x^{\prime \prime }+\frac {2 x^{\prime }}{5}+\frac {226 x}{25}&=6 \,{\mathrm e}^{-\frac {t}{5}} \cos \left (3 t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.191

555

\begin{align*} t x^{\prime \prime }+\left (t -2\right ) x^{\prime }+x&=0 \\ x \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _exact, _linear, _homogeneous]]

0.153

556

\begin{align*} t x^{\prime \prime }+\left (3 t -1\right ) x^{\prime }+3 x&=0 \\ x \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _exact, _linear, _homogeneous]]

0.152

557

\begin{align*} t x^{\prime \prime }-\left (4 t +1\right ) x^{\prime }+2 \left (2 t +1\right ) x&=0 \\ x \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.159

558

\begin{align*} t x^{\prime \prime }+2 \left (-1+t \right ) x^{\prime }-2 x&=0 \\ x \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.167

559

\begin{align*} t x^{\prime \prime }-2 x^{\prime }+t x&=0 \\ x \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[_Lienard]

0.152

560

\begin{align*} t x^{\prime \prime }+\left (4 t -2\right ) x^{\prime }+\left (13 t -4\right ) x&=0 \\ x \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _with_linear_symmetries]]

0.171

561

\begin{align*} x^{\prime \prime }+4 x&=f \left (t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.724

562

\begin{align*} x^{\prime \prime }+2 x^{\prime }+x&=f \left (t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.305

563

\begin{align*} x^{\prime \prime }+4 x^{\prime }+13 x&=f \left (t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

1.123

564

\begin{align*} x^{\prime \prime }+4 x&=\delta \left (t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.132

565

\begin{align*} x^{\prime \prime }+4 x&=\delta \left (t \right )+\delta \left (t -\pi \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.568

566

\begin{align*} x^{\prime \prime }+4 x^{\prime }+4 x&=1+\delta \left (t -2\right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.533

567

\begin{align*} x^{\prime \prime }+2 x^{\prime }+x&=t +\delta \left (t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.148

568

\begin{align*} x^{\prime \prime }+2 x^{\prime }+2 x&=2 \delta \left (t -\pi \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.359

569

\begin{align*} x^{\prime \prime }+9 x&=\delta \left (t -3 \pi \right )+\cos \left (3 t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.408

570

\begin{align*} x^{\prime \prime }+4 x^{\prime }+5 x&=\delta \left (t -\pi \right )+\delta \left (t -2 \pi \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

1.166

571

\begin{align*} x^{\prime \prime }+2 x^{\prime }+x&=\delta \left (t \right )-\delta \left (t -2\right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.529

572

\begin{align*} x^{\prime \prime }+4 x&=f \left (t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.173

573

\begin{align*} x^{\prime \prime }+6 x^{\prime }+9 x&=f \left (t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.312

574

\begin{align*} x^{\prime \prime }+6 x^{\prime }+8 x&=f \left (t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.421

575

\begin{align*} x^{\prime \prime }+4 x^{\prime }+8 x&=f \left (t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

[[_2nd_order, _linear, _nonhomogeneous]]

0.914

576

\begin{align*} x^{\prime }&=y \\ y^{\prime }&=-x \\ \end{align*}

system_of_ODEs

0.349

577

\begin{align*} x^{\prime }&=y \\ y^{\prime }&=x \\ \end{align*}

system_of_ODEs

0.315

578

\begin{align*} x^{\prime }&=-2 y \\ y^{\prime }&=2 x \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 0 \\ \end{align*}

system_of_ODEs

0.392

579

\begin{align*} x^{\prime }&=10 y \\ y^{\prime }&=-10 x \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 3 \\ y \left (0\right ) &= 4 \\ \end{align*}

system_of_ODEs

0.395

580

\begin{align*} x^{\prime }&=\frac {y}{2} \\ y^{\prime }&=-8 x \\ \end{align*}

system_of_ODEs

0.373

581

\begin{align*} x^{\prime }&=8 y \\ y^{\prime }&=-2 x \\ \end{align*}

system_of_ODEs

0.368

582

\begin{align*} x^{\prime }&=y \\ y^{\prime }&=6 x-y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 2 \\ \end{align*}

system_of_ODEs

0.415

583

\begin{align*} x^{\prime }&=-y \\ y^{\prime }&=10 x-7 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 2 \\ y \left (0\right ) &= -7 \\ \end{align*}

system_of_ODEs

0.431

584

\begin{align*} x^{\prime }&=-y \\ y^{\prime }&=13 x+4 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 3 \\ \end{align*}

system_of_ODEs

0.543

585

\begin{align*} x^{\prime }&=y \\ y^{\prime }&=-9 x+6 y \\ \end{align*}

system_of_ODEs

0.320

586

\begin{align*} 10 x_{1}^{\prime }&=-x_{1}+x_{3} \\ 10 x_{2}^{\prime }&=x_{1}-x_{2} \\ 10 x_{3}^{\prime }&=x_{2}-x_{3} \\ \end{align*}

system_of_ODEs

1.187

587

\begin{align*} x^{\prime }&=-x+3 y \\ y^{\prime }&=2 y \\ \end{align*}

system_of_ODEs

0.323

588

\begin{align*} x^{\prime }&=x-2 y \\ y^{\prime }&=2 x-3 y \\ \end{align*}

system_of_ODEs

0.308

589

\begin{align*} x^{\prime }&=-3 x+2 y \\ y^{\prime }&=-3 x+4 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 0 \\ y \left (0\right ) &= 2 \\ \end{align*}

system_of_ODEs

0.420

590

\begin{align*} x^{\prime }&=3 x-y \\ y^{\prime }&=5 x-3 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= -1 \\ \end{align*}

system_of_ODEs

0.414

591

\begin{align*} x^{\prime }&=-3 x-4 y \\ y^{\prime }&=2 x+y \\ \end{align*}

system_of_ODEs

0.500

592

\begin{align*} x^{\prime }&=x+9 y \\ y^{\prime }&=-2 x-5 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 3 \\ y \left (0\right ) &= 2 \\ \end{align*}

system_of_ODEs

0.572

593

\begin{align*} x^{\prime }&=4 x+y+2 t \\ y^{\prime }&=-2 x+y \\ \end{align*}

system_of_ODEs

0.641

594

\begin{align*} x^{\prime }&=2 x+y \\ y^{\prime }&=x+2 y-{\mathrm e}^{2 t} \\ \end{align*}

system_of_ODEs

0.564

595

\begin{align*} x^{\prime }&=2 x-3 y+2 \sin \left (2 t \right ) \\ y^{\prime }&=x-2 y-\cos \left (2 t \right ) \\ \end{align*}

system_of_ODEs

0.950

596

\begin{align*} x^{\prime }+2 y^{\prime }&=4 x+5 y \\ 2 x^{\prime }-y^{\prime }&=3 x \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= -1 \\ \end{align*}

system_of_ODEs

0.394

597

\begin{align*} -x^{\prime }+2 y^{\prime }&=x+3 y+{\mathrm e}^{t} \\ 3 x^{\prime }-4 y^{\prime }&=x-15 y+{\mathrm e}^{-t} \\ \end{align*}

system_of_ODEs

0.925

598

\begin{align*} x^{\prime }&=x+2 y+z \\ y^{\prime }&=6 x-y \\ z^{\prime }&=-x-2 y-z \\ \end{align*}

system_of_ODEs

0.711

599

\begin{align*} x^{\prime }&=x-2 y \\ y^{\prime }&=-4 x+4 y-2 z \\ z^{\prime }&=-4 y+4 z \\ \end{align*}

system_of_ODEs

49.599

600

\begin{align*} x^{\prime }&=y+z+{\mathrm e}^{-t} \\ y^{\prime }&=x+z \\ z^{\prime }&=x+y \\ \end{align*}

system_of_ODEs

0.889