2.3.5 Problem 5
Internal
problem
ID
[10336]
Book
:
First
order
enumerated
odes
Section
:
section
3.
First
order
odes
solved
using
Laplace
method
Problem
number
:
5
Date
solved
:
Thursday, November 27, 2025 at 10:34:34 AM
CAS
classification
:
[_separable]
\begin{align*}
y^{\prime } t +y&=0 \\
y \left (x_{0} \right ) &= y_{0} \\
\end{align*}
Using Laplace transform method.
Since initial condition is not at zero, then change of variable is used to transform the ode so that
initial condition is at zero.
\begin{align*} \tau = t -x_{0} \end{align*}
We will now apply Laplace transform to each term in the ode. Since this is time varying, the
following Laplace transform property will be used
\begin{align*} \tau ^{n} f \left (\tau \right ) &\xrightarrow {\mathscr {L}} (-1)^n \frac {d^n}{ds^n} F(s) \end{align*}
Where in the above \(F(s)\) is the laplace transform of \(f \left (\tau \right )\) . Applying the above property to each term of the
ode gives
\begin{align*} y &\xrightarrow {\mathscr {L}} Y \left (s \right )\\ y^{\prime } \left (\tau +x_{0} \right ) &\xrightarrow {\mathscr {L}} -Y \left (s \right )-s \left (\frac {d}{d s}Y \left (s \right )\right )+x_{0} \left (s Y \left (s \right )-y \left (0\right )\right ) \end{align*}
Collecting all the terms above, the ode in Laplace domain becomes
\[
-s Y^{\prime }+x_{0} \left (s Y-y \left (0\right )\right ) = 0
\]
Replacing
\(y \left (0\right ) = y_{0}\) in the above results
in
\[
-s Y^{\prime }+x_{0} \left (s Y-y_{0} \right ) = 0
\]
The above ode in Y(s) is now solved.
Solve In canonical form a linear first order is
\begin{align*} Y^{\prime } + q(s)Y &= p(s) \end{align*}
Comparing the above to the given ode shows that
\begin{align*} q(s) &=-x_{0}\\ p(s) &=-\frac {x_{0} y_{0}}{s} \end{align*}
The integrating factor \(\mu \) is
\begin{align*} \mu &= e^{\int {q\,ds}}\\ &= {\mathrm e}^{\int -x_{0} d s}\\ &= {\mathrm e}^{-s x_{0}} \end{align*}
The ode becomes
\begin{align*}
\frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}s}}\left ( \mu Y\right ) &= \mu p \\
\frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}s}}\left ( \mu Y\right ) &= \left (\mu \right ) \left (-\frac {x_{0} y_{0}}{s}\right ) \\
\frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}s}} \left (Y \,{\mathrm e}^{-s x_{0}}\right ) &= \left ({\mathrm e}^{-s x_{0}}\right ) \left (-\frac {x_{0} y_{0}}{s}\right ) \\
\mathrm {d} \left (Y \,{\mathrm e}^{-s x_{0}}\right ) &= \left (-\frac {x_{0} y_{0} {\mathrm e}^{-s x_{0}}}{s}\right )\, \mathrm {d} s \\
\end{align*}
Integrating gives
\begin{align*} Y \,{\mathrm e}^{-s x_{0}}&= \int {-\frac {x_{0} y_{0} {\mathrm e}^{-s x_{0}}}{s} \,ds} \\ &=x_{0} y_{0} \operatorname {Ei}_{1}\left (s x_{0} \right ) + c_1 \end{align*}
Dividing throughout by the integrating factor \({\mathrm e}^{-s x_{0}}\) gives the final solution
\[ Y = {\mathrm e}^{s x_{0}} \left (x_{0} y_{0} \operatorname {Ei}_{1}\left (s x_{0} \right )+c_1 \right ) \]
Applying inverse Laplace
transform on the above gives.
\begin{align*} y = \frac {x_{0} y_{0}}{\tau +x_{0}}+c_1 \operatorname {Typesetting}\mcoloneq \operatorname {msup}\left (\operatorname {Typesetting}\mcoloneq \operatorname {mi}\left (\text {``$\mathcal \{L\}$''}\right ), \operatorname {Typesetting}\mcoloneq \operatorname {mrow}\left (\operatorname {Typesetting}\mcoloneq \operatorname {mo}\left (\text {``$-$''}\right ), \operatorname {Typesetting}\mcoloneq \operatorname {mn}\left (``1''\right )\right ), \operatorname {Typesetting}\mcoloneq \operatorname {msemantics}=\text {``atomic''}\right )\left ({\mathrm e}^{s x_{0}}, s , \tau \right )\tag {1} \end{align*}
Substituting initial conditions \(y \left (0\right ) = y_{0}\) and \(y^{\prime }\left (0\right ) = y_{0}\) into the above solution Gives
\[
y_{0} = c_1 \operatorname {Typesetting}\mcoloneq \operatorname {msup}\left (\operatorname {Typesetting}\mcoloneq \operatorname {mi}\left (\text {``$\mathcal \{L\}$''}\right ), \operatorname {Typesetting}\mcoloneq \operatorname {mrow}\left (\operatorname {Typesetting}\mcoloneq \operatorname {mo}\left (\text {``$-$''}\right ), \operatorname {Typesetting}\mcoloneq \operatorname {mn}\left (``1''\right )\right ), \operatorname {Typesetting}\mcoloneq \operatorname {msemantics}=\text {``atomic''}\right )\left ({\mathrm e}^{s x_{0}}, s , \tau \right )+y_{0}
\]
Solving for the constant
\(c_1\) from
the above equation gives
\begin{align*} c_1 = 0 \end{align*}
Substituting the above back into the solution (1) gives
\[
y = \frac {x_{0} y_{0}}{\tau +x_{0}}
\]
Changing back the solution from
\(\tau \) to
\(t\) using
\begin{align*} \tau = t -x_{0} \end{align*}
the solution becomes
\begin{align*} y \left (t \right ) = \frac {x_{0} y_{0}}{t} \end{align*}
Figure 2.82: Slope field \(\left (\frac {d}{d t}y \left (t \right )\right ) t +y \left (t \right ) = 0\)
✓ Maple. Time used: 0.085 (sec). Leaf size: 10
ode := t * diff ( y ( t ), t )+ y ( t ) = 0;
ic :=[ y ( x__0 ) = y__0];
dsolve ([ ode , op ( ic )], y ( t ), method = ' laplace ' );
\[
y = \frac {y_{0} x_{0}}{t}
\]
Maple trace
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
Maple step by step
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \left [t \left (\frac {d}{d t}y \left (t \right )\right )+y \left (t \right )=0, y \left (x_{0} \right )=y_{0} \right ] \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & \frac {d}{d t}y \left (t \right ) \\ \bullet & {} & \textrm {Separate variables}\hspace {3pt} \\ {} & {} & \frac {\frac {d}{d t}y \left (t \right )}{y \left (t \right )}=-\frac {1}{t} \\ \bullet & {} & \textrm {Integrate both sides with respect to}\hspace {3pt} t \\ {} & {} & \int \frac {\frac {d}{d t}y \left (t \right )}{y \left (t \right )}d t =\int -\frac {1}{t}d t +\mathit {C1} \\ \bullet & {} & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & \ln \left (y \left (t \right )\right )=-\ln \left (t \right )+\mathit {C1} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} y \left (t \right ) \\ {} & {} & y \left (t \right )=\frac {{\mathrm e}^{\mathit {C1}}}{t} \\ \bullet & {} & \textrm {Redefine the integration constant(s)}\hspace {3pt} \\ {} & {} & y \left (t \right )=\frac {\mathit {C1}}{t} \\ \bullet & {} & \textrm {Use initial condition}\hspace {3pt} y \left (x_{0} \right )=y_{0} \\ {} & {} & y_{0} =\frac {\mathit {C1}}{x_{0}} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} \textit {\_C1} \\ {} & {} & \mathit {C1} =y_{0} x_{0} \\ \bullet & {} & \textrm {Substitute}\hspace {3pt} \textit {\_C1} =y_{0} x_{0} \hspace {3pt}\textrm {into general solution and simplify}\hspace {3pt} \\ {} & {} & y \left (t \right )=\frac {y_{0} x_{0}}{t} \\ \bullet & {} & \textrm {Solution to the IVP}\hspace {3pt} \\ {} & {} & y \left (t \right )=\frac {y_{0} x_{0}}{t} \end {array} \]
✓ Mathematica. Time used: 0.016 (sec). Leaf size: 11
ode = t * D [ y [ t ], t ]+ y [ t ]==0;
ic = y [ x0 ]== y0 ;
DSolve [{ ode , ic }, y [ t ], t , IncludeSingularSolutions -> True ]
\begin{align*} y(t)&\to \frac {\text {x0} \text {y0}}{t} \end{align*}
✓ Sympy. Time used: 0.065 (sec). Leaf size: 7
from sympy import *
t = symbols("t")
y = Function("y")
ode = Eq(t*Derivative(y(t), t) + y(t),0)
ics = {y(x__0): y__0}
dsolve ( ode , func = y ( t ), ics = ics )
\[
y{\left (t \right )} = \frac {x^{0} y^{0}}{t}
\]