4.18 Numerically integrate f(x) on the real line
Problem: Integrate
\[ \int _{-2}^{2}\frac {1}{5}\left ( \frac {1}{100}\left ( 322+3x\left ( 98+x\left ( 37+x\right ) \right ) \right ) -24\frac {x}{1+x^{2}}\right ) dx \]
The exact answer is \(94/25=3.76\)
| Mathematica
f[x_] := (1/5)(1/100(322+3*x(98+x(37+x)))-
24(x/(1+x^2)))
r = Integrate[f[x],{x,-2,2}]
|
Out[15]= 94/25
|
N[r]
|
Out[17]= 3.76
|
| To compare with Matlab, replace \(1\) by \(1.0\) in the expression (or use N)
f[x_]:=(1.0/5)(1/100(322+3*x(98+x(37+x)))-
24(x/(1+x^2)))
r = Integrate[f[x],{x,-2,2}];
InputForm[r]
|
Out[62]= 3.7600000000000007
|
| Matlab
clear all;
format long
f=@(x)(1/5)*(1/100*(322+3*x.*(98+x.*(37+x)))...
-24*(x/(1+x.^2)));
integral(f,-2,2)
|
ans =
3.760000000000001
|
integral(f,-2,2,'AbsTol',1e-6,'RelTol',1e-6)
|
ans =
3.760000000000001
|