Internal
problem
ID
[8710]
Book
:
Selected
problems
from
homeworks
from
different
courses
Section
:
Math
2520,
summer
2021.
Differential
Equations
and
Linear
Algebra.
Normandale
college,
Bloomington,
Minnesota
Problem
number
:
HW
5
problem
6
Date
solved
:
Sunday, March 30, 2025 at 01:24:19 PM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x(t),t) = -x(t)+4*y(t), diff(y(t),t) = 2*x(t)-3*y(t)]; ic:=x(0) = 3y(0) = 0; dsolve([ode,ic]);
ode={D[x[t],t]==-x[t]+4*y[t],D[y[t],t]==2*x[t]-3*y[t]}; ic={x[0]==3,y[0]==0}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(x(t) - 4*y(t) + Derivative(x(t), t),0),Eq(-2*x(t) + 3*y(t) + Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)