Internal
problem
ID
[8709]
Book
:
Selected
problems
from
homeworks
from
different
courses
Section
:
Math
2520,
summer
2021.
Differential
Equations
and
Linear
Algebra.
Normandale
college,
Bloomington,
Minnesota
Problem
number
:
HW
5
problem
5
Date
solved
:
Sunday, March 30, 2025 at 01:24:17 PM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x(t),t) = -2*x(t)+3*y(t), diff(y(t),t) = -2*x(t)+5*y(t)]; ic:=x(0) = -2y(0) = 1; dsolve([ode,ic]);
ode={D[x[t],t]==-2*x[t]+3*y[t],D[y[t],t]==-2*x[t]+5*y[t]}; ic={x[0]==-2,y[0]==1}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(2*x(t) - 3*y(t) + Derivative(x(t), t),0),Eq(2*x(t) - 5*y(t) + Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)