|
# |
ODE |
Mathematica |
Maple |
Sympy |
|
\[
{} \sqrt {y^{\prime }+y} = \left (y^{\prime \prime }+2 x \right )^{{1}/{4}}
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} 4 {y^{\prime }}^{3} y-2 x^{2} {y^{\prime }}^{2}+4 x y y^{\prime }+x^{3} = 16 y^{2}
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} \left (1+y^{2}\right ) y^{\prime \prime }-2 y {y^{\prime }}^{2}-2 \left (1+y^{2}\right ) y^{\prime } = y^{2} \left (1+y^{2}\right )
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} \left (x y^{\prime }-y\right ) \left (y y^{\prime }+x \right ) = h^{2} y^{\prime }
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} \left (x y^{\prime }-y\right ) \left (x -y y^{\prime }\right ) = 2 y^{\prime }
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} y^{\prime \prime } y^{\prime }-x^{2} y y^{\prime } = x y^{2}
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} x^{4} y^{\prime \prime }+x y^{\prime }+y = \frac {1}{x}
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} \left (y^{2}+2 y^{\prime } x^{2}\right ) y^{\prime \prime }+2 {y^{\prime }}^{2} \left (x +y\right )+x y^{\prime }+y = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} \left (x^{3}+x +1\right ) y^{\prime \prime \prime }+\left (6 x +3\right ) y^{\prime \prime }+6 y = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime \prime }+\frac {y^{\prime }}{x^{{1}/{3}}}+\left (\frac {1}{4 x^{{2}/{3}}}-\frac {1}{6 x^{{1}/{3}}}-\frac {6}{x^{2}}\right ) y = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime }+\frac {y \ln \left (y\right )}{x} = \frac {y}{x^{2}}-\ln \left (y\right )^{2}
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} \sec \left (y\right )^{2} y^{\prime }+2 x \tan \left (y\right ) = x^{3}
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} \left (a {y^{\prime }}^{2}-b \right ) x y+\left (b \,x^{2}-a y^{2}+c \right ) y^{\prime } = 0
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} \left (x y^{\prime }-y\right ) \left (y y^{\prime }+x \right ) = h^{2} y^{\prime }
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} a x y {y^{\prime }}^{2}+\left (x^{2}-a y^{2}-b \right ) y^{\prime }-x y = 0
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} x y {y^{\prime }}^{2}+\left (x^{2}+y^{2}-h^{2}\right ) y^{\prime }-x y = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} \left (y^{\prime } x^{2}+y^{2}\right ) \left (x y^{\prime }+y\right ) = \left (y^{\prime }+1\right )^{2}
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} \left (x y^{\prime }-y\right ) \left (x -y y^{\prime }\right ) = 2 y^{\prime }
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} x^{5} y^{\left (6\right )}+x^{4} y^{\left (5\right )}+x y^{\prime }+y = \ln \left (x \right )
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{2}+\left (2 x y-1\right ) y^{\prime }+x y^{\prime \prime }+x^{2} y^{\prime \prime \prime } = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} x^{2} y^{\prime \prime } = \sqrt {m \,x^{2} {y^{\prime }}^{3}+y^{2} n}
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} x^{2} y^{\prime \prime }+4 y^{2}-6 y = x^{4} {y^{\prime }}^{2}
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} 4 x^{2} y^{\prime \prime }+4 x^{5} y^{\prime }+\left (x^{3}+6 x^{2}+4\right ) y = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} \left (x y \sin \left (x y\right )+\cos \left (x y\right )\right ) y+\left (x y \sin \left (x y\right )-\cos \left (x y\right )\right ) y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} 3 x^{2} y^{4}+2 x y+\left (2 x^{3} y^{2}-x^{2}\right ) y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} 3 y {y^{\prime }}^{2}-2 x y y^{\prime }+4 y^{2}-x^{2} = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} \left (2 x^{2}+1\right ) {y^{\prime }}^{2}+\left (x^{2}+2 x y+y^{2}+2\right ) y^{\prime }+2 y^{2}+1 = 0
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} y+3 x y^{\prime }+2 y {y^{\prime }}^{2}+\left (x^{2}+2 y^{2} y^{\prime }\right ) y^{\prime \prime } = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} \left (y^{2}+2 y^{\prime } x^{2}\right ) y^{\prime \prime }+2 {y^{\prime }}^{2} \left (x +y\right )+x y^{\prime }+y = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime }-y y^{\prime \prime } = n \sqrt {{y^{\prime }}^{2}+a^{2} y^{\prime \prime }}
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} x y^{\prime \prime }+2 y^{\prime } = -y^{2}+y^{\prime } x^{2}
\]
|
✗ |
✗ |
✗ |
|