50.19.2 problem 1(b)

Internal problem ID [8110]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 4. Power Series Solutions and Special Functions. Section 4.4. REGULAR SINGULAR POINTS. Page 175
Problem number : 1(b)
Date solved : Sunday, March 30, 2025 at 12:45:37 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} \left (x^{2}-1\right ) y^{\prime \prime }-x \left (1-x \right ) y^{\prime }+2 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Maple. Time used: 0.031 (sec). Leaf size: 367
Order:=8; 
ode:=x^2*(x^2-1)*diff(diff(y(x),x),x)-x*(1-x)*diff(y(x),x)+2*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = c_1 \,x^{-\sqrt {2}} \left (1+\frac {\sqrt {2}}{-1+2 \sqrt {2}} x +\frac {\sqrt {2}}{-5+3 \sqrt {2}} x^{2}+\frac {-8+6 \sqrt {2}}{57 \sqrt {2}-81} x^{3}+\frac {-49 \sqrt {2}+69}{1104-780 \sqrt {2}} x^{4}+\frac {293 \sqrt {2}-414}{6108 \sqrt {2}-8640} x^{5}+\frac {-2757 \sqrt {2}+3898}{114408-80892 \sqrt {2}} x^{6}+\frac {1}{126} \frac {77567 \sqrt {2}-109686}{\left (-1+2 \sqrt {2}\right ) \left (\sqrt {2}-1\right ) \left (2 \sqrt {2}-3\right ) \left (-2+\sqrt {2}\right ) \left (-5+2 \sqrt {2}\right ) \left (-3+\sqrt {2}\right ) \left (-7+2 \sqrt {2}\right )} x^{7}+\operatorname {O}\left (x^{8}\right )\right )+c_2 \,x^{\sqrt {2}} \left (1+\frac {\sqrt {2}}{1+2 \sqrt {2}} x +\frac {\sqrt {2}}{5+3 \sqrt {2}} x^{2}+\frac {6 \sqrt {2}+8}{57 \sqrt {2}+81} x^{3}+\frac {49 \sqrt {2}+69}{1104+780 \sqrt {2}} x^{4}+\frac {293 \sqrt {2}+414}{6108 \sqrt {2}+8640} x^{5}+\frac {2757 \sqrt {2}+3898}{114408+80892 \sqrt {2}} x^{6}+\frac {1}{126} \frac {77567 \sqrt {2}+109686}{\left (1+2 \sqrt {2}\right ) \left (1+\sqrt {2}\right ) \left (3+2 \sqrt {2}\right ) \left (2+\sqrt {2}\right ) \left (5+2 \sqrt {2}\right ) \left (3+\sqrt {2}\right ) \left (7+2 \sqrt {2}\right )} x^{7}+\operatorname {O}\left (x^{8}\right )\right ) \]
Mathematica. Time used: 0.015 (sec). Leaf size: 10352
ode=x^2*(x^2-1)*D[y[x],{x,2}]-x*(1-x)*D[y[x],x]+2*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,7}]
 

Too large to display

Sympy. Time used: 0.995 (sec). Leaf size: 22
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*(x**2 - 1)*Derivative(y(x), (x, 2)) - x*(1 - x)*Derivative(y(x), x) + 2*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=8)
 
\[ y{\left (x \right )} = C_{2} x^{\sqrt {2}} + \frac {C_{1}}{x^{\sqrt {2}}} + O\left (x^{8}\right ) \]