50.9.8 problem 1(h)

Internal problem ID [7944]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 2. Second-Order Linear Equations. Section 2.1. Linear Equations with Constant Coefficients. Page 62
Problem number : 1(h)
Date solved : Sunday, March 30, 2025 at 12:38:50 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} 4 y^{\prime \prime }-12 y^{\prime }+9 y&=0 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 14
ode:=4*diff(diff(y(x),x),x)-12*diff(y(x),x)+9*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{\frac {3 x}{2}} \left (c_2 x +c_1 \right ) \]
Mathematica. Time used: 0.015 (sec). Leaf size: 20
ode=4*D[y[x],{x,2}]-12*D[y[x],x]+9*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^{3 x/2} (c_2 x+c_1) \]
Sympy. Time used: 0.153 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(9*y(x) - 12*Derivative(y(x), x) + 4*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} + C_{2} x\right ) e^{\frac {3 x}{2}} \]