50.9.7 problem 1(g)

Internal problem ID [7943]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 2. Second-Order Linear Equations. Section 2.1. Linear Equations with Constant Coefficients. Page 62
Problem number : 1(g)
Date solved : Sunday, March 30, 2025 at 12:38:49 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} 2 y^{\prime \prime }+2 y^{\prime }+3 y&=0 \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 28
ode:=2*diff(diff(y(x),x),x)+2*diff(y(x),x)+3*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{-\frac {x}{2}} \left (c_1 \sin \left (\frac {\sqrt {5}\, x}{2}\right )+c_2 \cos \left (\frac {\sqrt {5}\, x}{2}\right )\right ) \]
Mathematica. Time used: 0.032 (sec). Leaf size: 42
ode=2*D[y[x],{x,2}]+2*D[y[x],x]+3*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^{-x/2} \left (c_2 \cos \left (\frac {\sqrt {5} x}{2}\right )+c_1 \sin \left (\frac {\sqrt {5} x}{2}\right )\right ) \]
Sympy. Time used: 0.170 (sec). Leaf size: 31
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(3*y(x) + 2*Derivative(y(x), x) + 2*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} \sin {\left (\frac {\sqrt {5} x}{2} \right )} + C_{2} \cos {\left (\frac {\sqrt {5} x}{2} \right )}\right ) e^{- \frac {x}{2}} \]