Internal
problem
ID
[7676]
Book
:
An
introduction
to
Ordinary
Differential
Equations.
Earl
A.
Coddington.
Dover.
NY
1961
Section
:
Chapter
3.
Linear
equations
with
variable
coefficients.
Page
108
Problem
number
:
2
Date
solved
:
Sunday, March 30, 2025 at 12:18:43 PM
CAS
classification
:
[[_2nd_order, _exact, _linear, _homogeneous]]
ode:=(3*x-1)^2*diff(diff(y(x),x),x)+(9*x-3)*diff(y(x),x)-9*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(3*x-1)^2*D[y[x],{x,2}]+(9*x-3)*D[y[x],x]-9*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((3*x - 1)**2*Derivative(y(x), (x, 2)) + (9*x - 3)*Derivative(y(x), x) - 9*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False