Internal
problem
ID
[7675]
Book
:
An
introduction
to
Ordinary
Differential
Equations.
Earl
A.
Coddington.
Dover.
NY
1961
Section
:
Chapter
3.
Linear
equations
with
variable
coefficients.
Page
108
Problem
number
:
1(c.2)
Date
solved
:
Sunday, March 30, 2025 at 12:18:41 PM
CAS
classification
:
[[_2nd_order, _exact, _linear, _homogeneous]]
With initial conditions
ode:=diff(diff(y(x),x),x)+1/x*diff(y(x),x)-1/x^2*y(x) = 0; ic:=y(1) = 0, D(y)(1) = 1; dsolve([ode,ic],y(x), singsol=all);
ode=D[y[x],{x,2}]+1/x*D[y[x],x]-1/x^2*y[x]==0; ic={y[1]==0,Derivative[1][y][1]==1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), (x, 2)) + Derivative(y(x), x)/x - y(x)/x**2,0) ics = {y(1): 0, Subs(Derivative(y(x), x), x, 1): 1} dsolve(ode,func=y(x),ics=ics)