Internal
problem
ID
[7576]
Book
:
THEORY
OF
DIFFERENTIAL
EQUATIONS
IN
ENGINEERING
AND
MECHANICS.
K.T.
CHAU,
CRC
Press.
Boca
Raton,
FL.
2018
Section
:
Chapter
5.
Systems
of
First
Order
Differential
Equations.
Section
5.11
Problems.
Page
360
Problem
number
:
Problem
5.12
Date
solved
:
Sunday, March 30, 2025 at 12:15:52 PM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x__1(t),t) = 3*x__1(t)-18*x__2(t), diff(x__2(t),t) = 2*x__1(t)-9*x__2(t)]; ic:=x__1(0) = 2x__2(0) = 1; dsolve([ode,ic]);
ode={D[ x1[t],t]==3*x1[t]-18*x2[t],D[ x2[t],t]==2*x1[t]-9*x2[t]}; ic={x1[0]==2,x2[0]==1}; DSolve[{ode,ic},{x1[t],x2[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x__1 = Function("x__1") x__2 = Function("x__2") ode=[Eq(-3*x__1(t) + 18*x__2(t) + Derivative(x__1(t), t),0),Eq(-2*x__1(t) + 9*x__2(t) + Derivative(x__2(t), t),0)] ics = {} dsolve(ode,func=[x__1(t),x__2(t)],ics=ics)