48.5.10 problem Problem 5.11

Internal problem ID [7575]
Book : THEORY OF DIFFERENTIAL EQUATIONS IN ENGINEERING AND MECHANICS. K.T. CHAU, CRC Press. Boca Raton, FL. 2018
Section : Chapter 5. Systems of First Order Differential Equations. Section 5.11 Problems. Page 360
Problem number : Problem 5.11
Date solved : Sunday, March 30, 2025 at 12:15:50 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x_{1} \left (t \right )&=-x_{1} \left (t \right )+3 x_{2} \left (t \right )\\ \frac {d}{d t}x_{2} \left (t \right )&=-3 x_{1} \left (t \right )+5 x_{2} \left (t \right ) \end{align*}

With initial conditions

\begin{align*} x_{1} \left (0\right ) = 1\\ x_{2} \left (0\right ) = 2 \end{align*}

Maple. Time used: 0.125 (sec). Leaf size: 28
ode:=[diff(x__1(t),t) = -x__1(t)+3*x__2(t), diff(x__2(t),t) = -3*x__1(t)+5*x__2(t)]; 
ic:=x__1(0) = 1x__2(0) = 2; 
dsolve([ode,ic]);
 
\begin{align*} x_{1} \left (t \right ) &= {\mathrm e}^{2 t} \left (3 t +1\right ) \\ x_{2} \left (t \right ) &= \frac {{\mathrm e}^{2 t} \left (9 t +6\right )}{3} \\ \end{align*}
Mathematica. Time used: 0.003 (sec). Leaf size: 30
ode={D[ x1[t],t]==-x1[t]+3*x2[t],D[ x2[t],t]==-3*x1[t]+5*x2[t]}; 
ic={x1[0]==1,x2[0]==2}; 
DSolve[{ode,ic},{x1[t],x2[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} \text {x1}(t)\to e^{2 t} (3 t+1) \\ \text {x2}(t)\to e^{2 t} (3 t+2) \\ \end{align*}
Sympy. Time used: 0.141 (sec). Leaf size: 46
from sympy import * 
t = symbols("t") 
x__1 = Function("x__1") 
x__2 = Function("x__2") 
ode=[Eq(x__1(t) - 3*x__2(t) + Derivative(x__1(t), t),0),Eq(3*x__1(t) - 5*x__2(t) + Derivative(x__2(t), t),0)] 
ics = {} 
dsolve(ode,func=[x__1(t),x__2(t)],ics=ics)
 
\[ \left [ x^{1}{\left (t \right )} = - 3 C_{2} t e^{2 t} - \left (3 C_{1} - C_{2}\right ) e^{2 t}, \ x^{2}{\left (t \right )} = - 3 C_{1} e^{2 t} - 3 C_{2} t e^{2 t}\right ] \]