Internal
problem
ID
[7510]
Book
:
THEORY
OF
DIFFERENTIAL
EQUATIONS
IN
ENGINEERING
AND
MECHANICS.
K.T.
CHAU,
CRC
Press.
Boca
Raton,
FL.
2018
Section
:
Chapter
3.
Ordinary
Differential
Equations.
Section
3.2
FIRST
ORDER
ODE.
Page
114
Problem
number
:
Example
3.9
Date
solved
:
Sunday, March 30, 2025 at 12:11:35 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class A`]]
ode:=x+y(x)-(x-y(x))*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(x+y[x])-(x-y[x])*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x - (x - y(x))*Derivative(y(x), x) + y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)