Internal
problem
ID
[7509]
Book
:
THEORY
OF
DIFFERENTIAL
EQUATIONS
IN
ENGINEERING
AND
MECHANICS.
K.T.
CHAU,
CRC
Press.
Boca
Raton,
FL.
2018
Section
:
Chapter
3.
Ordinary
Differential
Equations.
Section
3.2
FIRST
ORDER
ODE.
Page
114
Problem
number
:
Example
3.8
Date
solved
:
Sunday, March 30, 2025 at 12:11:33 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _Bernoulli]
ode:=y(x)^2-x*y(x)+x^2*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(y[x]^2-x*y[x])+x^2*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), x) - x*y(x) + y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)