Internal
problem
ID
[7501]
Book
:
Ordinary
differential
equations
and
calculus
of
variations.
Makarets
and
Reshetnyak.
Wold
Scientific.
Singapore.
1995
Section
:
Chapter
2.
Linear
homogeneous
equations.
Section
2.3.4
problems.
page
104
Problem
number
:
12
Date
solved
:
Sunday, March 30, 2025 at 12:11:01 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=(cos(x)-sin(x))*diff(diff(y(x),x),x)-2*sin(x)*diff(y(x),x)+(cos(x)+sin(x))*y(x) = (cos(x)-sin(x))^2; dsolve(ode,y(x), singsol=all);
ode=(Cos[x]-Sin[x])*D[y[x],{x,2}]-2*Sin[x]*D[y[x],x]+(Cos[x]+Sin[x])*y[x]==(Cos[x]-Sin[x])^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Too large to display
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-(-sin(x) + cos(x))**2 + (-sin(x) + cos(x))*Derivative(y(x), (x, 2)) + (sin(x) + cos(x))*y(x) - 2*sin(x)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -y(x)/2 - y(x)/(2*tan(x)) - cos(x) + Derivative(y(x), x) + Derivative(y(x), (x, 2))/2 - Derivative(y(x), (x, 2))/(2*tan(x)) + 1/(2*sin(x)) cannot be solved by the factorable group method