Internal
problem
ID
[7500]
Book
:
Ordinary
differential
equations
and
calculus
of
variations.
Makarets
and
Reshetnyak.
Wold
Scientific.
Singapore.
1995
Section
:
Chapter
2.
Linear
homogeneous
equations.
Section
2.3.4
problems.
page
104
Problem
number
:
11
Date
solved
:
Sunday, March 30, 2025 at 12:10:52 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=(cos(x)+sin(x))*diff(diff(y(x),x),x)-2*cos(x)*diff(y(x),x)+(cos(x)-sin(x))*y(x) = (cos(x)+sin(x))^2*exp(2*x); dsolve(ode,y(x), singsol=all);
ode=(Cos[x]+Sin[x])*D[y[x],{x,2}]-2*Cos[x]*D[y[x],x]+(Cos[x]-Sin[x])*y[x]==(Cos[x]+Sin[x])^2*Exp[2*x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((-sin(x) + cos(x))*y(x) - (sin(x) + cos(x))**2*exp(2*x) + (sin(x) + cos(x))*Derivative(y(x), (x, 2)) - 2*cos(x)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE y(x)*tan(x)/2 - y(x)/2 + exp(2*x)*sin(x) + exp(2*x)/(2*cos(x)) - tan(x)*Derivative(y(x), (x, 2))/2 + Derivative(y(x), x) - Derivative(y(x), (x, 2))/2 cannot be solved by the factorable group method