Internal
problem
ID
[7451]
Book
:
Ordinary
differential
equations
and
calculus
of
variations.
Makarets
and
Reshetnyak.
Wold
Scientific.
Singapore.
1995
Section
:
Chapter
1.
First
order
differential
equations.
Section
1.2
Homogeneous
equations
problems.
page
12
Problem
number
:
33
Date
solved
:
Sunday, March 30, 2025 at 12:07:22 PM
CAS
classification
:
[[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `class A`]]
ode:=diff(y(x),x) = (x+3*y(x)-5)/(x-y(x)-1); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==(x+3*y[x]-5)/(x-y[x]-1); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x) - (x + 3*y(x) - 5)/(x - y(x) - 1),0) ics = {} dsolve(ode,func=y(x),ics=ics)