47.2.36 problem 34

Internal problem ID [7452]
Book : Ordinary differential equations and calculus of variations. Makarets and Reshetnyak. Wold Scientific. Singapore. 1995
Section : Chapter 1. First order differential equations. Section 1.2 Homogeneous equations problems. page 12
Problem number : 34
Date solved : Sunday, March 30, 2025 at 12:07:25 PM
CAS classification : [[_homogeneous, `class C`], _rational]

\begin{align*} y^{\prime }&=\frac {2 \left (y+2\right )^{2}}{\left (x +y+1\right )^{2}} \end{align*}

Maple. Time used: 0.011 (sec). Leaf size: 25
ode:=diff(y(x),x) = 2*(2+y(x))^2/(x+y(x)+1)^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -2-\tan \left (\operatorname {RootOf}\left (-2 \textit {\_Z} +\ln \left (\tan \left (\textit {\_Z} \right )\right )+\ln \left (x -1\right )+c_1 \right )\right ) \left (x -1\right ) \]
Mathematica. Time used: 0.166 (sec). Leaf size: 27
ode=D[y[x],x]==2*((y[x]+2)/(x+y[x]+1))^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [2 \arctan \left (\frac {1-x}{y(x)+2}\right )+\log (y(x)+2)=c_1,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*(y(x) + 2)**2/(x + y(x) + 1)**2 + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out