Internal
problem
ID
[7452]
Book
:
Ordinary
differential
equations
and
calculus
of
variations.
Makarets
and
Reshetnyak.
Wold
Scientific.
Singapore.
1995
Section
:
Chapter
1.
First
order
differential
equations.
Section
1.2
Homogeneous
equations
problems.
page
12
Problem
number
:
34
Date
solved
:
Sunday, March 30, 2025 at 12:07:25 PM
CAS
classification
:
[[_homogeneous, `class C`], _rational]
ode:=diff(y(x),x) = 2*(2+y(x))^2/(x+y(x)+1)^2; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==2*((y[x]+2)/(x+y[x]+1))^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-2*(y(x) + 2)**2/(x + y(x) + 1)**2 + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out