Internal
problem
ID
[7367]
Book
:
ADVANCED
ENGINEERING
MATHEMATICS.
ERWIN
KREYSZIG,
HERBERT
KREYSZIG,
EDWARD
J.
NORMINTON.
10th
edition.
John
Wiley
USA.
2011
Section
:
Chapter
6.
Laplace
Transforms.
Problem
set
6.3,
page
224
Problem
number
:
23
Date
solved
:
Sunday, March 30, 2025 at 11:55:26 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)+diff(y(t),t)-2*y(t) = piecewise(0 < t and t < 2*Pi,3*sin(t)-cos(t),2*Pi < t,3*sin(2*t)-cos(2*t)); ic:=y(0) = 1, D(y)(0) = 0; dsolve([ode,ic],y(t),method='laplace');
ode=D[y[t],{t,2}]+D[y[t],t]-2*y[t]==Piecewise[{{3*Sin[t]-Cos[t],0<t<2*Pi},{3*Sin[2*t]-Cos[2*t],t>2*Pi}}]; ic={y[0]==1,Derivative[1][y][0] ==0}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-Piecewise((3*sin(t) - cos(t), (t > 0) & (t < 2*pi)), (3*sin(2*t) - cos(2*t), t > 2*pi)) - 2*y(t) + Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) ics = {y(0): 1, Subs(Derivative(y(t), t), t, 0): 0} dsolve(ode,func=y(t),ics=ics)