Internal
problem
ID
[7366]
Book
:
ADVANCED
ENGINEERING
MATHEMATICS.
ERWIN
KREYSZIG,
HERBERT
KREYSZIG,
EDWARD
J.
NORMINTON.
10th
edition.
John
Wiley
USA.
2011
Section
:
Chapter
6.
Laplace
Transforms.
Problem
set
6.3,
page
224
Problem
number
:
22
Date
solved
:
Sunday, March 30, 2025 at 11:55:23 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)+3*diff(y(t),t)+2*y(t) = piecewise(0 < t and t < 1,4*t,1 < t,8); ic:=y(0) = 0, D(y)(0) = 0; dsolve([ode,ic],y(t),method='laplace');
ode=D[y[t],{t,2}]+3*D[y[t],t]+2*y[t]==Piecewise[{{4*t,0<t<1},{8,t>1}}]; ic={y[0]==0,Derivative[1][y][0] ==0}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-Piecewise((4*t, (t <= 1) & (t > 0)), (8, t > 1)) + 2*y(t) + 3*Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) ics = {y(0): 0, Subs(Derivative(y(t), t), t, 0): 0} dsolve(ode,func=y(t),ics=ics)