40.15.3 problem 12

Internal problem ID [6789]
Book : Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank Ayres. McGraw Hill 1952
Section : Chapter 21. System of simultaneous linear equations. Supplemetary problems. Page 163
Problem number : 12
Date solved : Sunday, March 30, 2025 at 11:22:53 AM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )+x \left (t \right )+2 \frac {d}{d t}y \left (t \right )+7 y \left (t \right )&={\mathrm e}^{t}+2\\ -2 x \left (t \right )+\frac {d}{d t}y \left (t \right )+3 y \left (t \right )&={\mathrm e}^{t}-1 \end{align*}

Maple. Time used: 0.263 (sec). Leaf size: 70
ode:=[diff(x(t),t)+x(t)+2*diff(y(t),t)+7*y(t) = exp(t)+2, -2*x(t)+diff(y(t),t)+3*y(t) = exp(t)-1]; 
dsolve(ode);
 
\begin{align*} x \left (t \right ) &= {\mathrm e}^{-4 t} \sin \left (t \right ) c_2 +{\mathrm e}^{-4 t} \cos \left (t \right ) c_1 +\frac {13}{17}-\frac {5 \,{\mathrm e}^{t}}{26} \\ y \left (t \right ) &= -{\mathrm e}^{-4 t} \sin \left (t \right ) c_2 -{\mathrm e}^{-4 t} \cos \left (t \right ) c_2 -{\mathrm e}^{-4 t} \cos \left (t \right ) c_1 +{\mathrm e}^{-4 t} \sin \left (t \right ) c_1 +\frac {2 \,{\mathrm e}^{t}}{13}+\frac {3}{17} \\ \end{align*}
Mathematica. Time used: 0.197 (sec). Leaf size: 79
ode={D[x[t],t]+x[t]+2*D[y[t],t]+7*y[t]==Exp[t]+2,-2*x[t]+D[y[t],t]+3*y[t]==Exp[t]-1}; 
ic={}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)\to -\frac {5 e^t}{26}+c_1 e^{-4 t} \cos (t)-(c_1+c_2) e^{-4 t} \sin (t)+\frac {13}{17} \\ y(t)\to \frac {2 e^t}{13}+c_2 e^{-4 t} \cos (t)+(2 c_1+c_2) e^{-4 t} \sin (t)+\frac {3}{17} \\ \end{align*}
Sympy. Time used: 4.614 (sec). Leaf size: 136
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
ode=[Eq(x(t) + 7*y(t) - exp(t) + Derivative(x(t), t) + 2*Derivative(y(t), t) - 2,0),Eq(-2*x(t) + 3*y(t) - exp(t) + Derivative(y(t), t) + 1,0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
\[ \left [ x{\left (t \right )} = - \left (\frac {C_{1}}{2} - \frac {C_{2}}{2}\right ) e^{- 4 t} \sin {\left (t \right )} - \left (\frac {C_{1}}{2} + \frac {C_{2}}{2}\right ) e^{- 4 t} \cos {\left (t \right )} - \frac {5 e^{t} \sin ^{2}{\left (t \right )}}{26} - \frac {5 e^{t} \cos ^{2}{\left (t \right )}}{26} + \frac {13 \sin ^{2}{\left (t \right )}}{17} + \frac {13 \cos ^{2}{\left (t \right )}}{17}, \ y{\left (t \right )} = C_{1} e^{- 4 t} \cos {\left (t \right )} - C_{2} e^{- 4 t} \sin {\left (t \right )} + \frac {2 e^{t} \sin ^{2}{\left (t \right )}}{13} + \frac {2 e^{t} \cos ^{2}{\left (t \right )}}{13} + \frac {3 \sin ^{2}{\left (t \right )}}{17} + \frac {3 \cos ^{2}{\left (t \right )}}{17}\right ] \]