40.15.2 problem 11

Internal problem ID [6788]
Book : Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank Ayres. McGraw Hill 1952
Section : Chapter 21. System of simultaneous linear equations. Supplemetary problems. Page 163
Problem number : 11
Date solved : Sunday, March 30, 2025 at 11:22:51 AM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )+2 x \left (t \right )+\frac {d}{d t}y \left (t \right )+y \left (t \right )&=t\\ 5 x \left (t \right )+\frac {d}{d t}y \left (t \right )+3 y \left (t \right )&=t^{2} \end{align*}

Maple. Time used: 0.156 (sec). Leaf size: 53
ode:=[diff(x(t),t)+2*x(t)+diff(y(t),t)+y(t) = t, 5*x(t)+diff(y(t),t)+3*y(t) = t^2]; 
dsolve(ode);
 
\begin{align*} x \left (t \right ) &= \sin \left (t \right ) c_2 +\cos \left (t \right ) c_1 -t^{2}+t +3 \\ y \left (t \right ) &= 2 t^{2}+\frac {\cos \left (t \right ) c_2}{2}-\frac {\sin \left (t \right ) c_1}{2}-3 t -4-\frac {3 \sin \left (t \right ) c_2}{2}-\frac {3 \cos \left (t \right ) c_1}{2} \\ \end{align*}
Mathematica. Time used: 0.127 (sec). Leaf size: 61
ode={D[x[t],t]+2*x[t]+D[y[t],t]+y[t]==t,5*x[t]+D[y[t],t]+3*y[t]==t^2}; 
ic={}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)\to -t^2+t+c_1 \cos (t)+(3 c_1+2 c_2) \sin (t)+3 \\ y(t)\to 2 t^2-3 t+c_2 \cos (t)-(5 c_1+3 c_2) \sin (t)-4 \\ \end{align*}
Sympy. Time used: 0.300 (sec). Leaf size: 133
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
ode=[Eq(-t + 2*x(t) + y(t) + Derivative(x(t), t) + Derivative(y(t), t),0),Eq(-t**2 + 5*x(t) + 3*y(t) + Derivative(y(t), t),0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
\[ \left [ x{\left (t \right )} = - t^{2} \sin ^{2}{\left (t \right )} - t^{2} \cos ^{2}{\left (t \right )} + t \sin ^{2}{\left (t \right )} + t \cos ^{2}{\left (t \right )} + \left (\frac {C_{1}}{5} + \frac {3 C_{2}}{5}\right ) \sin {\left (t \right )} - \left (\frac {3 C_{1}}{5} - \frac {C_{2}}{5}\right ) \cos {\left (t \right )} + 3 \sin ^{2}{\left (t \right )} + 3 \cos ^{2}{\left (t \right )}, \ y{\left (t \right )} = C_{1} \cos {\left (t \right )} - C_{2} \sin {\left (t \right )} + 2 t^{2} \sin ^{2}{\left (t \right )} + 2 t^{2} \cos ^{2}{\left (t \right )} - 3 t \sin ^{2}{\left (t \right )} - 3 t \cos ^{2}{\left (t \right )} - 4 \sin ^{2}{\left (t \right )} - 4 \cos ^{2}{\left (t \right )}\right ] \]