Internal
problem
ID
[6760]
Book
:
Schaums
Outline.
Theory
and
problems
of
Differential
Equations,
1st
edition.
Frank
Ayres.
McGraw
Hill
1952
Section
:
Chapter
18.
Linear
equations
with
variable
coefficients
(Equations
of
second
order).
Supplemetary
problems.
Page
120
Problem
number
:
26
Date
solved
:
Sunday, March 30, 2025 at 11:21:43 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=x^2*diff(diff(y(x),x),x)-x*(2*x+3)*diff(y(x),x)+(x^2+3*x+3)*y(x) = (-x^2+6)*exp(x); dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]-x*(2*x+3)*D[y[x],x]+(x^2+3*x+3)*y[x]==(6-x^2)*Exp[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) - x*(2*x + 3)*Derivative(y(x), x) - (6 - x**2)*exp(x) + (x**2 + 3*x + 3)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (x**2*y(x) + x**2*exp(x) + x**2*Derivative(y(x), (x, 2)) + 3*x*y(x) + 3*y(x) - 6*exp(x))/(x*(2*x + 3)) cannot be solved by the factorable group method