40.13.5 problem 25

Internal problem ID [6759]
Book : Schaums Outline. Theory and problems of Differential Equations, 1st edition. Frank Ayres. McGraw Hill 1952
Section : Chapter 18. Linear equations with variable coefficients (Equations of second order). Supplemetary problems. Page 120
Problem number : 25
Date solved : Sunday, March 30, 2025 at 11:21:42 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }-10 y&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 20
ode:=diff(diff(y(x),x),x)-2*tan(x)*diff(y(x),x)-10*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \sec \left (x \right ) \left (c_1 \sinh \left (3 x \right )+c_2 \cosh \left (3 x \right )\right ) \]
Mathematica. Time used: 0.061 (sec). Leaf size: 29
ode=D[y[x],{x,2}]-2*Tan[x]*D[y[x],x]-10*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {1}{6} e^{-3 x} \left (c_2 e^{6 x}+6 c_1\right ) \sec (x) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-10*y(x) - 2*tan(x)*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False