36.3.16 problem 17

Internal problem ID [6337]
Book : Fundamentals of Differential Equations. By Nagle, Saff and Snider. 9th edition. Boston. Pearson 2018.
Section : Chapter 2, First order differential equations. Section 2.4, Exact equations. Exercises. page 64
Problem number : 17
Date solved : Sunday, March 30, 2025 at 10:52:01 AM
CAS classification : [[_homogeneous, `class G`], _rational]

\begin{align*} \frac {1}{y}-\left (3 y-\frac {x}{y^{2}}\right ) y^{\prime }&=0 \end{align*}

Maple. Time used: 0.007 (sec). Leaf size: 18
ode:=1/y(x)-(3*y(x)-x/y(x)^2)*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ -\frac {c_1}{y}+x -\frac {3 y^{3}}{4} = 0 \]
Mathematica. Time used: 36.497 (sec). Leaf size: 870
ode=1/y[x]-(3*y[x]-x/y[x]^2)*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {\sqrt {\frac {4 c_1}{\sqrt [3]{3 x^2-\sqrt {9 x^4-64 c_1{}^3}}}+\sqrt [3]{3 x^2-\sqrt {9 x^4-64 c_1{}^3}}}+\sqrt {-\frac {2 \sqrt {6} x}{\sqrt {\frac {4 c_1}{\sqrt [3]{3 x^2-\sqrt {9 x^4-64 c_1{}^3}}}+\sqrt [3]{3 x^2-\sqrt {9 x^4-64 c_1{}^3}}}}-\sqrt [3]{3 x^2-\sqrt {9 x^4-64 c_1{}^3}}-\frac {4 c_1}{\sqrt [3]{3 x^2-\sqrt {9 x^4-64 c_1{}^3}}}}}{\sqrt {6}} \\ y(x)\to \frac {\sqrt {-\frac {2 \sqrt {6} x}{\sqrt {\frac {4 c_1}{\sqrt [3]{3 x^2-\sqrt {9 x^4-64 c_1{}^3}}}+\sqrt [3]{3 x^2-\sqrt {9 x^4-64 c_1{}^3}}}}-\sqrt [3]{3 x^2-\sqrt {9 x^4-64 c_1{}^3}}-\frac {4 c_1}{\sqrt [3]{3 x^2-\sqrt {9 x^4-64 c_1{}^3}}}}-\sqrt {\frac {4 c_1}{\sqrt [3]{3 x^2-\sqrt {9 x^4-64 c_1{}^3}}}+\sqrt [3]{3 x^2-\sqrt {9 x^4-64 c_1{}^3}}}}{\sqrt {6}} \\ y(x)\to \frac {\sqrt {\frac {4 c_1}{\sqrt [3]{3 x^2-\sqrt {9 x^4-64 c_1{}^3}}}+\sqrt [3]{3 x^2-\sqrt {9 x^4-64 c_1{}^3}}}-\sqrt {\frac {2 \sqrt {6} x}{\sqrt {\frac {4 c_1}{\sqrt [3]{3 x^2-\sqrt {9 x^4-64 c_1{}^3}}}+\sqrt [3]{3 x^2-\sqrt {9 x^4-64 c_1{}^3}}}}-\sqrt [3]{3 x^2-\sqrt {9 x^4-64 c_1{}^3}}-\frac {4 c_1}{\sqrt [3]{3 x^2-\sqrt {9 x^4-64 c_1{}^3}}}}}{\sqrt {6}} \\ y(x)\to \frac {\sqrt {\frac {4 c_1}{\sqrt [3]{3 x^2-\sqrt {9 x^4-64 c_1{}^3}}}+\sqrt [3]{3 x^2-\sqrt {9 x^4-64 c_1{}^3}}}+\sqrt {\frac {2 \sqrt {6} x}{\sqrt {\frac {4 c_1}{\sqrt [3]{3 x^2-\sqrt {9 x^4-64 c_1{}^3}}}+\sqrt [3]{3 x^2-\sqrt {9 x^4-64 c_1{}^3}}}}-\sqrt [3]{3 x^2-\sqrt {9 x^4-64 c_1{}^3}}-\frac {4 c_1}{\sqrt [3]{3 x^2-\sqrt {9 x^4-64 c_1{}^3}}}}}{\sqrt {6}} \\ \end{align*}
Sympy. Time used: 22.458 (sec). Leaf size: 682
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((x/y(x)**2 - 3*y(x))*Derivative(y(x), x) + 1/y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = \frac {\sqrt {6} \left (- \sqrt {- \frac {4 C_{1}}{\sqrt [3]{3 x^{2} + \sqrt {64 C_{1}^{3} + 9 x^{4}}}} + \sqrt [3]{3 x^{2} + \sqrt {64 C_{1}^{3} + 9 x^{4}}}} - \sqrt {\frac {4 C_{1}}{\sqrt [3]{3 x^{2} + \sqrt {64 C_{1}^{3} + 9 x^{4}}}} - \frac {2 \sqrt {6} x}{\sqrt {- \frac {4 C_{1}}{\sqrt [3]{3 x^{2} + \sqrt {64 C_{1}^{3} + 9 x^{4}}}} + \sqrt [3]{3 x^{2} + \sqrt {64 C_{1}^{3} + 9 x^{4}}}}} - \sqrt [3]{3 x^{2} + \sqrt {64 C_{1}^{3} + 9 x^{4}}}}\right )}{6}, \ y{\left (x \right )} = \frac {\sqrt {6} \left (- \sqrt {- \frac {4 C_{1}}{\sqrt [3]{3 x^{2} + \sqrt {64 C_{1}^{3} + 9 x^{4}}}} + \sqrt [3]{3 x^{2} + \sqrt {64 C_{1}^{3} + 9 x^{4}}}} + \sqrt {\frac {4 C_{1}}{\sqrt [3]{3 x^{2} + \sqrt {64 C_{1}^{3} + 9 x^{4}}}} - \frac {2 \sqrt {6} x}{\sqrt {- \frac {4 C_{1}}{\sqrt [3]{3 x^{2} + \sqrt {64 C_{1}^{3} + 9 x^{4}}}} + \sqrt [3]{3 x^{2} + \sqrt {64 C_{1}^{3} + 9 x^{4}}}}} - \sqrt [3]{3 x^{2} + \sqrt {64 C_{1}^{3} + 9 x^{4}}}}\right )}{6}, \ y{\left (x \right )} = \frac {\sqrt {6} \left (\sqrt {- \frac {4 C_{1}}{\sqrt [3]{3 x^{2} + \sqrt {64 C_{1}^{3} + 9 x^{4}}}} + \sqrt [3]{3 x^{2} + \sqrt {64 C_{1}^{3} + 9 x^{4}}}} - \sqrt {\frac {4 C_{1}}{\sqrt [3]{3 x^{2} + \sqrt {64 C_{1}^{3} + 9 x^{4}}}} + \frac {2 \sqrt {6} x}{\sqrt {- \frac {4 C_{1}}{\sqrt [3]{3 x^{2} + \sqrt {64 C_{1}^{3} + 9 x^{4}}}} + \sqrt [3]{3 x^{2} + \sqrt {64 C_{1}^{3} + 9 x^{4}}}}} - \sqrt [3]{3 x^{2} + \sqrt {64 C_{1}^{3} + 9 x^{4}}}}\right )}{6}, \ y{\left (x \right )} = \frac {\sqrt {6} \left (\sqrt {- \frac {4 C_{1}}{\sqrt [3]{3 x^{2} + \sqrt {64 C_{1}^{3} + 9 x^{4}}}} + \sqrt [3]{3 x^{2} + \sqrt {64 C_{1}^{3} + 9 x^{4}}}} + \sqrt {\frac {4 C_{1}}{\sqrt [3]{3 x^{2} + \sqrt {64 C_{1}^{3} + 9 x^{4}}}} + \frac {2 \sqrt {6} x}{\sqrt {- \frac {4 C_{1}}{\sqrt [3]{3 x^{2} + \sqrt {64 C_{1}^{3} + 9 x^{4}}}} + \sqrt [3]{3 x^{2} + \sqrt {64 C_{1}^{3} + 9 x^{4}}}}} - \sqrt [3]{3 x^{2} + \sqrt {64 C_{1}^{3} + 9 x^{4}}}}\right )}{6}\right ] \]