36.3.15 problem 16

Internal problem ID [6336]
Book : Fundamentals of Differential Equations. By Nagle, Saff and Snider. 9th edition. Boston. Pearson 2018.
Section : Chapter 2, First order differential equations. Section 2.4, Exact equations. Exercises. page 64
Problem number : 16
Date solved : Sunday, March 30, 2025 at 10:51:59 AM
CAS classification : [_exact]

\begin{align*} y \,{\mathrm e}^{x y}-\frac {1}{y}+\left (x \,{\mathrm e}^{x y}+\frac {x}{y^{2}}\right ) y^{\prime }&=0 \end{align*}

Maple. Time used: 0.006 (sec). Leaf size: 17
ode:=y(x)*exp(x*y(x))-1/y(x)+(x*exp(x*y(x))+x/y(x)^2)*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ {\mathrm e}^{x y}-\frac {x}{y}+c_1 = 0 \]
Mathematica. Time used: 0.225 (sec). Leaf size: 20
ode=(y[x]*Exp[x*y[x]]-1/y[x])+(x*Exp[x*y[x]]+x/y[x]^2)*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [e^{x y(x)}-\frac {x}{y(x)}=c_1,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((x*exp(x*y(x)) + x/y(x)**2)*Derivative(y(x), x) + y(x)*exp(x*y(x)) - 1/y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out