32.10.23 problem Exercise 35.23(b), page 504

Internal problem ID [6017]
Book : Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section : Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number : Exercise 35.23(b), page 504
Date solved : Sunday, March 30, 2025 at 10:31:37 AM
CAS classification : [[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

\begin{align*} x y y^{\prime \prime }+x {y^{\prime }}^{2}-y y^{\prime }&=0 \end{align*}

Maple. Time used: 0.024 (sec). Leaf size: 35
ode:=x*y(x)*diff(diff(y(x),x),x)+x*diff(y(x),x)^2-y(x)*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= 0 \\ y &= \sqrt {c_1 \,x^{2}+2 c_2} \\ y &= -\sqrt {c_1 \,x^{2}+2 c_2} \\ \end{align*}
Mathematica. Time used: 0.247 (sec). Leaf size: 18
ode=x*y[x]*D[y[x],{x,2}]+x*(D[y[x],x])^2-y[x]*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_2 \sqrt {x^2+c_1} \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*y(x)*Derivative(y(x), (x, 2)) + x*Derivative(y(x), x)**2 - y(x)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(x), x) - (sqrt((-4*x**2*Derivative(y(x), (x, 2)) + y(x))*y(x)) + y(x))/(2*x) cannot be solved by the factorable group method