32.10.22 problem Exercise 35.23(a), page 504

Internal problem ID [6016]
Book : Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section : Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number : Exercise 35.23(a), page 504
Date solved : Sunday, March 30, 2025 at 10:31:36 AM
CAS classification : [_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

\begin{align*} x y y^{\prime \prime }-2 x {y^{\prime }}^{2}+y y^{\prime }&=0 \end{align*}

Maple. Time used: 0.027 (sec). Leaf size: 18
ode:=x*y(x)*diff(diff(y(x),x),x)-2*x*diff(y(x),x)^2+y(x)*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= 0 \\ y &= -\frac {1}{c_1 \ln \left (x \right )+c_2} \\ \end{align*}
Mathematica. Time used: 0.252 (sec). Leaf size: 22
ode=x*y[x]*D[y[x],{x,2}]-2*x*(D[y[x],x])^2+y[x]*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {c_2}{-\log (x)+c_1} \\ y(x)\to 0 \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*y(x)*Derivative(y(x), (x, 2)) - 2*x*Derivative(y(x), x)**2 + y(x)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(x), x) - (sqrt((8*x**2*Derivative(y(x), (x, 2)) + y(x))*y(x)) + y(x))/(4*x) cannot be solved by the factorable group method