Internal
problem
ID
[5895]
Book
:
Ordinary
Differential
Equations,
By
Tenenbaum
and
Pollard.
Dover,
NY
1963
Section
:
Chapter
2.
Special
types
of
differential
equations
of
the
first
kind.
Lesson
12,
Miscellaneous
Methods
Problem
number
:
Exercise
12.30,
page
103
Date
solved
:
Sunday, March 30, 2025 at 10:24:20 AM
CAS
classification
:
[_exact, _rational, [_Abel, `2nd type`, `class B`]]
ode:=(6*x*y(x)+x^2+3)*diff(y(x),x)+3*y(x)^2+2*x*y(x)+2*x = 0; dsolve(ode,y(x), singsol=all);
ode=(6*x*y[x]+x^2+3)*D[y[x],x]+3*y[x]^2+2*x*y[x]+2*x==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x*y(x) + 2*x + (x**2 + 6*x*y(x) + 3)*Derivative(y(x), x) + 3*y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out