Internal
problem
ID
[5894]
Book
:
Ordinary
Differential
Equations,
By
Tenenbaum
and
Pollard.
Dover,
NY
1963
Section
:
Chapter
2.
Special
types
of
differential
equations
of
the
first
kind.
Lesson
12,
Miscellaneous
Methods
Problem
number
:
Exercise
12.29,
page
103
Date
solved
:
Sunday, March 30, 2025 at 10:24:14 AM
CAS
classification
:
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class B`]]
ode:=y(x)^2-3*x*y(x)-2*x^2+(x*y(x)-x^2)*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(x*y[x]-x^2)*D[y[x],x]+y[x]^2-3*x*y[x]-2*x^2==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-2*x**2 - 3*x*y(x) + (-x**2 + x*y(x))*Derivative(y(x), x) + y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)