Internal
problem
ID
[5823]
Book
:
Ordinary
Differential
Equations,
By
Tenenbaum
and
Pollard.
Dover,
NY
1963
Section
:
Chapter
2.
Special
types
of
differential
equations
of
the
first
kind.
Lesson
10
Problem
number
:
Recognizable
Exact
Differential
equations.
Integrating
factors.
Exercise
10.4,
page
90
Date
solved
:
Sunday, March 30, 2025 at 10:18:50 AM
CAS
classification
:
[_exact]
ode:=x-2*x*y(x)+exp(y(x))+(y(x)-x^2+x*exp(y(x)))*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(x-2*x*y[x]+Exp[y[x]])+(y[x]-x^2+x*Exp[y[x]])*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-2*x*y(x) + x + (-x**2 + x*exp(y(x)) + y(x))*Derivative(y(x), x) + exp(y(x)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out