32.4.11 problem Recognizable Exact Differential equations. Integrating factors. Exercise 10.3, page 90

Internal problem ID [5822]
Book : Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section : Chapter 2. Special types of differential equations of the first kind. Lesson 10
Problem number : Recognizable Exact Differential equations. Integrating factors. Exercise 10.3, page 90
Date solved : Sunday, March 30, 2025 at 10:18:48 AM
CAS classification : [_rational, _Bernoulli]

\begin{align*} x^{2}+y^{2}+x +x y y^{\prime }&=0 \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 49
ode:=x^2+y(x)^2+x+x*y(x)*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -\frac {\sqrt {-18 x^{4}-24 x^{3}+36 c_1}}{6 x} \\ y &= \frac {\sqrt {-18 x^{4}-24 x^{3}+36 c_1}}{6 x} \\ \end{align*}
Mathematica. Time used: 0.299 (sec). Leaf size: 60
ode=(x^2+y[x]^2+x)+(x*y[x])*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {\sqrt {-\frac {x^4}{2}-\frac {2 x^3}{3}+c_1}}{x} \\ y(x)\to \frac {\sqrt {-\frac {x^4}{2}-\frac {2 x^3}{3}+c_1}}{x} \\ \end{align*}
Sympy. Time used: 0.440 (sec). Leaf size: 42
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2 + x*y(x)*Derivative(y(x), x) + x + y(x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - \frac {\sqrt {C_{1} - 18 x^{4} - 24 x^{3}}}{6 x}, \ y{\left (x \right )} = \frac {\sqrt {C_{1} - 18 x^{4} - 24 x^{3}}}{6 x}\right ] \]