30.1.7 problem Example, page 38

Internal problem ID [5695]
Book : Differential and integral calculus, vol II By N. Piskunov. 1974
Section : Chapter 1
Problem number : Example, page 38
Date solved : Sunday, March 30, 2025 at 10:02:44 AM
CAS classification : [[_homogeneous, `class D`], _rational, _Bernoulli]

\begin{align*} y+x y^{2}-x y^{\prime }&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 16
ode:=y(x)+x*y(x)^2-x*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\frac {2 x}{x^{2}-2 c_1} \]
Mathematica. Time used: 0.15 (sec). Leaf size: 23
ode=(y[x]+x*y[x]^2)-x*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {2 x}{x^2-2 c_1} \\ y(x)\to 0 \\ \end{align*}
Sympy. Time used: 0.199 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*y(x)**2 - x*Derivative(y(x), x) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {2 x}{C_{1} - x^{2}} \]