30.1.6 problem Example, page 36

Internal problem ID [5694]
Book : Differential and integral calculus, vol II By N. Piskunov. 1974
Section : Chapter 1
Problem number : Example, page 36
Date solved : Sunday, March 30, 2025 at 10:02:39 AM
CAS classification : [[_homogeneous, `class A`], _exact, _rational, _dAlembert]

\begin{align*} \frac {2 x}{y^{3}}+\frac {\left (y^{2}-3 x^{2}\right ) y^{\prime }}{y^{4}}&=0 \end{align*}

Maple. Time used: 0.011 (sec). Leaf size: 313
ode:=2*x/y(x)^3+(y(x)^2-3*x^2)/y(x)^4*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {1+\frac {\left (12 \sqrt {3}\, x \sqrt {27 x^{2} c_1^{2}-4}\, c_1 -108 x^{2} c_1^{2}+8\right )^{{1}/{3}}}{2}+\frac {2}{\left (12 \sqrt {3}\, x \sqrt {27 x^{2} c_1^{2}-4}\, c_1 -108 x^{2} c_1^{2}+8\right )^{{1}/{3}}}}{3 c_1} \\ y &= -\frac {\left (1+i \sqrt {3}\right ) \left (12 \sqrt {3}\, x \sqrt {27 x^{2} c_1^{2}-4}\, c_1 -108 x^{2} c_1^{2}+8\right )^{{2}/{3}}-4 i \sqrt {3}-4 \left (12 \sqrt {3}\, x \sqrt {27 x^{2} c_1^{2}-4}\, c_1 -108 x^{2} c_1^{2}+8\right )^{{1}/{3}}+4}{12 \left (12 \sqrt {3}\, x \sqrt {27 x^{2} c_1^{2}-4}\, c_1 -108 x^{2} c_1^{2}+8\right )^{{1}/{3}} c_1} \\ y &= \frac {\left (i \sqrt {3}-1\right ) \left (12 \sqrt {3}\, x \sqrt {27 x^{2} c_1^{2}-4}\, c_1 -108 x^{2} c_1^{2}+8\right )^{{2}/{3}}-4 i \sqrt {3}+4 \left (12 \sqrt {3}\, x \sqrt {27 x^{2} c_1^{2}-4}\, c_1 -108 x^{2} c_1^{2}+8\right )^{{1}/{3}}-4}{12 \left (12 \sqrt {3}\, x \sqrt {27 x^{2} c_1^{2}-4}\, c_1 -108 x^{2} c_1^{2}+8\right )^{{1}/{3}} c_1} \\ \end{align*}
Mathematica. Time used: 60.202 (sec). Leaf size: 458
ode=2*x/y[x]^3+(y[x]^2-3*x^2)/(y[x]^4)*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {1}{3} \left (\frac {\sqrt [3]{27 e^{c_1} x^2+3 \sqrt {81 e^{2 c_1} x^4-12 e^{4 c_1} x^2}-2 e^{3 c_1}}}{\sqrt [3]{2}}+\frac {\sqrt [3]{2} e^{2 c_1}}{\sqrt [3]{27 e^{c_1} x^2+3 \sqrt {81 e^{2 c_1} x^4-12 e^{4 c_1} x^2}-2 e^{3 c_1}}}-e^{c_1}\right ) \\ y(x)\to \frac {i \left (\sqrt {3}+i\right ) \sqrt [3]{27 e^{c_1} x^2+3 \sqrt {81 e^{2 c_1} x^4-12 e^{4 c_1} x^2}-2 e^{3 c_1}}}{6 \sqrt [3]{2}}-\frac {i \left (\sqrt {3}-i\right ) e^{2 c_1}}{3\ 2^{2/3} \sqrt [3]{27 e^{c_1} x^2+3 \sqrt {81 e^{2 c_1} x^4-12 e^{4 c_1} x^2}-2 e^{3 c_1}}}-\frac {e^{c_1}}{3} \\ y(x)\to -\frac {i \left (\sqrt {3}-i\right ) \sqrt [3]{27 e^{c_1} x^2+3 \sqrt {81 e^{2 c_1} x^4-12 e^{4 c_1} x^2}-2 e^{3 c_1}}}{6 \sqrt [3]{2}}+\frac {i \left (\sqrt {3}+i\right ) e^{2 c_1}}{3\ 2^{2/3} \sqrt [3]{27 e^{c_1} x^2+3 \sqrt {81 e^{2 c_1} x^4-12 e^{4 c_1} x^2}-2 e^{3 c_1}}}-\frac {e^{c_1}}{3} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x/y(x)**3 + (-3*x**2 + y(x)**2)*Derivative(y(x), x)/y(x)**4,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out