Internal
problem
ID
[5615]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
35
Problem
number
:
1050
Date
solved
:
Sunday, March 30, 2025 at 09:20:14 AM
CAS
classification
:
[_quadrature]
ode:=diff(y(x),x)^3-(y(x)^2+2*x)*diff(y(x),x)^2+(x^2-y(x)^2+2*x*y(x)^2)*diff(y(x),x)-(x^2-y(x)^2)*y(x)^2 = 0; dsolve(ode,y(x), singsol=all);
ode=(D[y[x],x])^3 -(2*x+y[x]^2)*(D[y[x],x])^2 +(x^2 -y[x]^2+2* x* y[x]^2)* D[y[x],x]-(x^2-y[x]^2)*y[x]^2==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((-2*x - y(x)**2)*Derivative(y(x), x)**2 - (x**2 - y(x)**2)*y(x)**2 + (x**2 + 2*x*y(x)**2 - y(x)**2)*Derivative(y(x), x) + Derivative(y(x), x)**3,0) ics = {} dsolve(ode,func=y(x),ics=ics)