Internal
problem
ID
[5614]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
35
Problem
number
:
1049
Date
solved
:
Sunday, March 30, 2025 at 09:20:12 AM
CAS
classification
:
[_quadrature]
ode:=diff(y(x),x)^3+(2*x-y(x)^2)*diff(y(x),x)^2-2*x*y(x)^2*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(D[y[x],x])^3 +(2*x-y[x]^2)*(D[y[x],x])^2 -2*x*y[x]^2 D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-2*x*y(x)**2*Derivative(y(x), x) + (2*x - y(x)**2)*Derivative(y(x), x)**2 + Derivative(y(x), x)**3,0) ics = {} dsolve(ode,func=y(x),ics=ics)