Internal
problem
ID
[5501]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
31
Problem
number
:
921
Date
solved
:
Sunday, March 30, 2025 at 08:25:58 AM
CAS
classification
:
[_separable]
ode:=(a^2-x^2)*diff(y(x),x)^2-2*x*diff(y(x),x)*y(x)-y(x)^2 = 0; dsolve(ode,y(x), singsol=all);
ode=(a^2-x^2) (D[y[x],x])^2-2 x y[x] D[y[x],x]-y[x]^2==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") ode = Eq(-2*x*y(x)*Derivative(y(x), x) + (a**2 - x**2)*Derivative(y(x), x)**2 - y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)