29.30.25 problem 885

Internal problem ID [5465]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 30
Problem number : 885
Date solved : Sunday, March 30, 2025 at 08:14:24 AM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} 4 x {y^{\prime }}^{2}+2 x y^{\prime }-y&=0 \end{align*}

Maple. Time used: 0.032 (sec). Leaf size: 35
ode:=4*x*diff(y(x),x)^2+2*x*diff(y(x),x)-y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -\frac {x}{4} \\ y &= 4 c_1 +2 \sqrt {c_1 x} \\ y &= 4 c_1 -2 \sqrt {c_1 x} \\ \end{align*}
Mathematica. Time used: 0.14 (sec). Leaf size: 72
ode=4 x (D[y[x],x])^2+2 x D[y[x],x]-y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {1}{4} e^{2 c_1} \left (-2 \sqrt {x}+e^{2 c_1}\right ) \\ y(x)\to \frac {1}{4} e^{-4 c_1} \left (1+2 e^{2 c_1} \sqrt {x}\right ) \\ y(x)\to 0 \\ y(x)\to -\frac {x}{4} \\ \end{align*}
Sympy. Time used: 33.400 (sec). Leaf size: 92
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*x*Derivative(y(x), x)**2 + 2*x*Derivative(y(x), x) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = C_{1} - \sqrt {C_{1} x}, \ y{\left (x \right )} = C_{1} + \sqrt {C_{1} x}, \ y{\left (x \right )} = - C_{1} - \sqrt {- C_{1} x}, \ y{\left (x \right )} = - C_{1} + \sqrt {- C_{1} x}, \ y{\left (x \right )} = C_{1} - \sqrt {C_{1} x}, \ y{\left (x \right )} = C_{1} + \sqrt {C_{1} x}, \ y{\left (x \right )} = - C_{1} - \sqrt {- C_{1} x}, \ y{\left (x \right )} = - C_{1} + \sqrt {- C_{1} x}\right ] \]