Internal
problem
ID
[5285]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
24
Problem
number
:
695
Date
solved
:
Sunday, March 30, 2025 at 07:51:11 AM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _dAlembert]
ode:=x*(x^3+3*x^2*y(x)+y(x)^3)*diff(y(x),x) = (3*x^2+y(x)^2)*y(x)^2; dsolve(ode,y(x), singsol=all);
ode=x(x^3+3 x^2 y[x]+y[x]^3)D[y[x],x]==(3 x^2+y[x]^2)y[x]^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*(x**3 + 3*x**2*y(x) + y(x)**3)*Derivative(y(x), x) - (3*x**2 + y(x)**2)*y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)