29.24.31 problem 694

Internal problem ID [5284]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 24
Problem number : 694
Date solved : Sunday, March 30, 2025 at 07:50:49 AM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} x \left (2 x^{3}-y^{3}\right ) y^{\prime }&=\left (x^{3}-2 y^{3}\right ) y \end{align*}

Maple. Time used: 0.008 (sec). Leaf size: 323
ode:=x*(2*x^3-y(x)^3)*diff(y(x),x) = (x^3-2*y(x)^3)*y(x); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {\left (\frac {\left (-108+8 x^{3} c_1^{3}+12 \sqrt {-12 x^{3} c_1^{3}+81}\right )^{{1}/{3}}}{2}+\frac {2 c_1^{2} x^{2}}{\left (-108+8 x^{3} c_1^{3}+12 \sqrt {-12 x^{3} c_1^{3}+81}\right )^{{1}/{3}}}+c_1 x \right ) x}{3} \\ y &= -\frac {\left (-4 i \sqrt {3}\, c_1^{2} x^{2}+i \sqrt {3}\, \left (-108+8 x^{3} c_1^{3}+12 \sqrt {-12 x^{3} c_1^{3}+81}\right )^{{2}/{3}}+4 c_1^{2} x^{2}-4 c_1 x \left (-108+8 x^{3} c_1^{3}+12 \sqrt {-12 x^{3} c_1^{3}+81}\right )^{{1}/{3}}+\left (-108+8 x^{3} c_1^{3}+12 \sqrt {-12 x^{3} c_1^{3}+81}\right )^{{2}/{3}}\right ) x}{12 \left (-108+8 x^{3} c_1^{3}+12 \sqrt {-12 x^{3} c_1^{3}+81}\right )^{{1}/{3}}} \\ y &= \frac {\left (-108+8 x^{3} c_1^{3}+12 \sqrt {-12 x^{3} c_1^{3}+81}\right )^{{1}/{3}} \left (i \sqrt {3}-1\right ) x}{12}-\frac {c_1 \,x^{2} \left (i x c_1 \sqrt {3}+c_1 x -\left (-108+8 x^{3} c_1^{3}+12 \sqrt {-12 x^{3} c_1^{3}+81}\right )^{{1}/{3}}\right )}{3 \left (-108+8 x^{3} c_1^{3}+12 \sqrt {-12 x^{3} c_1^{3}+81}\right )^{{1}/{3}}} \\ \end{align*}
Mathematica. Time used: 45.532 (sec). Leaf size: 542
ode=x(2 x^3-y[x]^3)D[y[x],x]==(x^3-2 y[x]^3)y[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {1}{3} \left (e^{c_1} x^2+\frac {\sqrt [3]{2 e^{3 c_1} x^6-27 x^3+3 \sqrt {81 x^6-12 e^{3 c_1} x^9}}}{\sqrt [3]{2}}+\frac {\sqrt [3]{2} e^{2 c_1} x^4}{\sqrt [3]{2 e^{3 c_1} x^6-27 x^3+3 \sqrt {81 x^6-12 e^{3 c_1} x^9}}}\right ) \\ y(x)\to \frac {e^{c_1} x^2}{3}+\frac {i \left (\sqrt {3}+i\right ) \sqrt [3]{2 e^{3 c_1} x^6-27 x^3+3 \sqrt {81 x^6-12 e^{3 c_1} x^9}}}{6 \sqrt [3]{2}}-\frac {i \left (\sqrt {3}-i\right ) e^{2 c_1} x^4}{3\ 2^{2/3} \sqrt [3]{2 e^{3 c_1} x^6-27 x^3+3 \sqrt {81 x^6-12 e^{3 c_1} x^9}}} \\ y(x)\to \frac {e^{c_1} x^2}{3}-\frac {i \left (\sqrt {3}-i\right ) \sqrt [3]{2 e^{3 c_1} x^6-27 x^3+3 \sqrt {81 x^6-12 e^{3 c_1} x^9}}}{6 \sqrt [3]{2}}+\frac {i \left (\sqrt {3}+i\right ) e^{2 c_1} x^4}{3\ 2^{2/3} \sqrt [3]{2 e^{3 c_1} x^6-27 x^3+3 \sqrt {81 x^6-12 e^{3 c_1} x^9}}} \\ y(x)\to \frac {\sqrt [3]{\sqrt {x^6}-x^3}}{\sqrt [3]{2}} \\ y(x)\to -\frac {i \left (\sqrt {3}-i\right ) \sqrt [3]{\sqrt {x^6}-x^3}}{2 \sqrt [3]{2}} \\ y(x)\to \frac {i \left (\sqrt {3}+i\right ) \sqrt [3]{\sqrt {x^6}-x^3}}{2 \sqrt [3]{2}} \\ \end{align*}
Sympy. Time used: 27.903 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*(2*x**3 - y(x)**3)*Derivative(y(x), x) - (x**3 - 2*y(x)**3)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1} x}{6 \left (1 - \sqrt {3} i\right )} \]