29.22.14 problem 622

Internal problem ID [5214]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 22
Problem number : 622
Date solved : Sunday, March 30, 2025 at 06:52:59 AM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} \left (3 x +y\right )^{2} y^{\prime }&=4 \left (3 x +2 y\right ) y \end{align*}

Maple. Time used: 0.011 (sec). Leaf size: 44
ode:=(3*x+y(x))^2*diff(y(x),x) = 4*(3*x+2*y(x))*y(x); 
dsolve(ode,y(x), singsol=all);
 
\[ 3 \ln \left (\frac {y}{x}\right )-\ln \left (\frac {y+x}{x}\right )-3 \ln \left (\frac {y-3 x}{x}\right )-\ln \left (x \right )-c_1 = 0 \]
Mathematica. Time used: 60.18 (sec). Leaf size: 747
ode=(3 x+y[x])^2 D[y[x],x]==4(3 x+2 y[x])y[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {1}{4} \left (-\sqrt {12 \sqrt [3]{-e^{c_1} x^4 \left (-16 x+e^{c_1}\right )}+16 x^2-16 e^{c_1} x+e^{2 c_1}}-\sqrt {2} \sqrt {-6 \sqrt [3]{-e^{c_1} x^4 \left (-16 x+e^{c_1}\right )}-48 x^2+\frac {\left (-8 x+e^{c_1}\right ){}^3-72 x^2 \left (-8 x+e^{c_1}\right )}{\sqrt {12 \sqrt [3]{-e^{c_1} x^4 \left (-16 x+e^{c_1}\right )}+16 x^2-16 e^{c_1} x+e^{2 c_1}}}+\left (-8 x+e^{c_1}\right ){}^2}+8 x-e^{c_1}\right ) \\ y(x)\to \frac {1}{4} \left (-\sqrt {12 \sqrt [3]{-e^{c_1} x^4 \left (-16 x+e^{c_1}\right )}+16 x^2-16 e^{c_1} x+e^{2 c_1}}+\sqrt {2} \sqrt {-6 \sqrt [3]{-e^{c_1} x^4 \left (-16 x+e^{c_1}\right )}-48 x^2+\frac {\left (-8 x+e^{c_1}\right ){}^3-72 x^2 \left (-8 x+e^{c_1}\right )}{\sqrt {12 \sqrt [3]{-e^{c_1} x^4 \left (-16 x+e^{c_1}\right )}+16 x^2-16 e^{c_1} x+e^{2 c_1}}}+\left (-8 x+e^{c_1}\right ){}^2}+8 x-e^{c_1}\right ) \\ y(x)\to \frac {1}{4} \left (\sqrt {12 \sqrt [3]{-e^{c_1} x^4 \left (-16 x+e^{c_1}\right )}+16 x^2-16 e^{c_1} x+e^{2 c_1}}-\sqrt {2} \sqrt {-6 \sqrt [3]{-e^{c_1} x^4 \left (-16 x+e^{c_1}\right )}-48 x^2+\frac {72 x^2 \left (-8 x+e^{c_1}\right )-\left (-8 x+e^{c_1}\right ){}^3}{\sqrt {12 \sqrt [3]{-e^{c_1} x^4 \left (-16 x+e^{c_1}\right )}+16 x^2-16 e^{c_1} x+e^{2 c_1}}}+\left (-8 x+e^{c_1}\right ){}^2}+8 x-e^{c_1}\right ) \\ y(x)\to \frac {1}{4} \left (\sqrt {12 \sqrt [3]{-e^{c_1} x^4 \left (-16 x+e^{c_1}\right )}+16 x^2-16 e^{c_1} x+e^{2 c_1}}+\sqrt {2} \sqrt {-6 \sqrt [3]{-e^{c_1} x^4 \left (-16 x+e^{c_1}\right )}-48 x^2+\frac {72 x^2 \left (-8 x+e^{c_1}\right )-\left (-8 x+e^{c_1}\right ){}^3}{\sqrt {12 \sqrt [3]{-e^{c_1} x^4 \left (-16 x+e^{c_1}\right )}+16 x^2-16 e^{c_1} x+e^{2 c_1}}}+\left (-8 x+e^{c_1}\right ){}^2}+8 x-e^{c_1}\right ) \\ \end{align*}
Sympy. Time used: 88.209 (sec). Leaf size: 1163
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((3*x + y(x))**2*Derivative(y(x), x) - (12*x + 8*y(x))*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \text {Solution too large to show} \]