Internal
problem
ID
[5126]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
19
Problem
number
:
530
Date
solved
:
Sunday, March 30, 2025 at 06:42:38 AM
CAS
classification
:
[[_homogeneous, `class A`], _dAlembert]
ode:=x*(x+y(x))*diff(y(x),x)-y(x)*(x+y(x))+x*(x^2-y(x)^2)^(1/2) = 0; dsolve(ode,y(x), singsol=all);
ode=x(x+y[x])D[y[x],x]-y[x](x+y[x])+x Sqrt[x^2-y[x]^2]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*(x + y(x))*Derivative(y(x), x) + x*sqrt(x**2 - y(x)**2) - (x + y(x))*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)