29.19.16 problem 529

Internal problem ID [5125]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 19
Problem number : 529
Date solved : Sunday, March 30, 2025 at 06:42:32 AM
CAS classification : [[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class B`]]

\begin{align*} x \left (x -y\right ) y^{\prime }+2 x^{2}+3 x y-y^{2}&=0 \end{align*}

Maple. Time used: 0.017 (sec). Leaf size: 59
ode:=x*(x-y(x))*diff(y(x),x)+2*x^2+3*x*y(x)-y(x)^2 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {c_1 \,x^{2}-\sqrt {2 x^{4} c_1^{2}+1}}{c_1 x} \\ y &= \frac {c_1 \,x^{2}+\sqrt {2 x^{4} c_1^{2}+1}}{c_1 x} \\ \end{align*}
Mathematica. Time used: 0.72 (sec). Leaf size: 99
ode=x(x-y[x])D[y[x],x]+2 x^2+3 x y[x]-y[x]^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to x-\frac {\sqrt {2 x^4+e^{2 c_1}}}{x} \\ y(x)\to x+\frac {\sqrt {2 x^4+e^{2 c_1}}}{x} \\ y(x)\to x-\frac {\sqrt {2} \sqrt {x^4}}{x} \\ y(x)\to \frac {\sqrt {2} \sqrt {x^4}}{x}+x \\ \end{align*}
Sympy. Time used: 1.414 (sec). Leaf size: 31
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x**2 + x*(x - y(x))*Derivative(y(x), x) + 3*x*y(x) - y(x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = x - \frac {\sqrt {C_{1} + 2 x^{4}}}{x}, \ y{\left (x \right )} = x + \frac {\sqrt {C_{1} + 2 x^{4}}}{x}\right ] \]