29.18.13 problem 489

Internal problem ID [5087]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 18
Problem number : 489
Date solved : Sunday, March 30, 2025 at 06:36:11 AM
CAS classification : [[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} \left (6+3 x +5 y\right ) y^{\prime }&=2+x +7 y \end{align*}

Maple. Time used: 0.545 (sec). Leaf size: 46
ode:=(6+3*x+5*y(x))*diff(y(x),x) = 2+x+7*y(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (-x -2\right ) {\operatorname {RootOf}\left (6+\left (c_1 \,x^{3}+6 c_1 \,x^{2}+12 c_1 x +8 c_1 \right ) \textit {\_Z}^{12}-5 \textit {\_Z}^{3}\right )}^{3}+x +2 \]
Mathematica. Time used: 60.164 (sec). Leaf size: 4977
ode=(6+3 x+5 y[x])D[y[x],x]==2 + x+7 y[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Too large to display

Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x + (3*x + 5*y(x) + 6)*Derivative(y(x), x) - 7*y(x) - 2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out