29.18.12 problem 488

Internal problem ID [5086]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 18
Problem number : 488
Date solved : Sunday, March 30, 2025 at 06:36:07 AM
CAS classification : [[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} \left (11-11 x -4 y\right ) y^{\prime }&=62-8 x -25 y \end{align*}

Maple. Time used: 0.205 (sec). Leaf size: 119
ode:=(11-11*x-4*y(x))*diff(y(x),x) = 62-8*x-25*y(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\frac {2}{9}+\frac {\left (1-i \sqrt {3}\right ) \left (12 \sqrt {3}\, \sqrt {-32+177147 \left (x -\frac {1}{9}\right )^{2} c_1^{2}}+\left (-8748 x +972\right ) c_1 \right )^{{2}/{3}}}{108}+\frac {2 i \sqrt {3}}{9}+2 \left (12 \sqrt {3}\, \sqrt {-32+177147 \left (x -\frac {1}{9}\right )^{2} c_1^{2}}-8748 c_1 x +972 c_1 \right )^{{1}/{3}} \left (2 x +1\right ) c_1}{\left (12 \sqrt {3}\, \sqrt {-32+177147 \left (x -\frac {1}{9}\right )^{2} c_1^{2}}+\left (-8748 x +972\right ) c_1 \right )^{{1}/{3}} c_1} \]
Mathematica. Time used: 60.187 (sec). Leaf size: 1677
ode=(11-11 x-4 y[x])D[y[x],x]==62-8x -25 y[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Too large to display

Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(8*x + (-11*x - 4*y(x) + 11)*Derivative(y(x), x) + 25*y(x) - 62,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out