Internal
problem
ID
[4933]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
12
Problem
number
:
333
Date
solved
:
Sunday, March 30, 2025 at 04:16:12 AM
CAS
classification
:
[_rational, [_1st_order, `_with_symmetry_[F(x),G(x)]`], _Riccati]
ode:=x*(1-2*x)*diff(y(x),x) = 4*x-(1+4*x)*y(x)+y(x)^2; dsolve(ode,y(x), singsol=all);
ode=x(1-2 x)D[y[x],x]==4 x -(1+4 x)y[x]+y[x]^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*(1 - 2*x)*Derivative(y(x), x) - 4*x + (4*x + 1)*y(x) - y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)