29.12.13 problem 332

Internal problem ID [4932]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 12
Problem number : 332
Date solved : Sunday, March 30, 2025 at 04:16:10 AM
CAS classification : [_linear]

\begin{align*} x \left (1-2 x \right ) y^{\prime }+1+\left (1-4 x \right ) y&=0 \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 18
ode:=x*(1-2*x)*diff(y(x),x)+1+(1-4*x)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {x +c_1}{x \left (-1+2 x \right )} \]
Mathematica. Time used: 0.04 (sec). Leaf size: 22
ode=x(1-2 x)D[y[x],x]+1+(1-4 x)y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to -\frac {x-c_1}{x-2 x^2} \]
Sympy. Time used: 0.285 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*(1 - 2*x)*Derivative(y(x), x) + (1 - 4*x)*y(x) + 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {\frac {C_{1}}{x} + 1}{2 x - 1} \]