29.7.21 problem 196

Internal problem ID [4796]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 7
Problem number : 196
Date solved : Sunday, March 30, 2025 at 03:57:42 AM
CAS classification : [[_1st_order, `_with_symmetry_[F(x),G(x)*y+H(x)]`]]

\begin{align*} x y^{\prime }&=y+x \sqrt {x^{2}+y^{2}} \end{align*}

Maple. Time used: 14.161 (sec). Leaf size: 28
ode:=x*diff(y(x),x) = y(x)+x*(x^2+y(x)^2)^(1/2); 
dsolve(ode,y(x), singsol=all);
 
\[ \ln \left (y+\sqrt {x^{2}+y^{2}}\right )-x -\ln \left (x \right )-c_{1} = 0 \]
Mathematica. Time used: 0.237 (sec). Leaf size: 12
ode=x D[y[x],x]==y[x]+x Sqrt[x^2+y[x]^2]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to x \sinh (x+c_1) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*sqrt(x**2 + y(x)**2) + x*Derivative(y(x), x) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out